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ABSTRACT
Teaching robotic systems how to carry out a task in a collaborative
environment still presents a challenge. This is because replicating
natural human-to-human interaction requires the availability of
interaction modalities that allow conveying complex information.
Speech, gestures, gaze-based interactions as well as directly guid-
ing a robotic system count towards such modalities that yield the
potential to enable smooth multimodal human-robot interaction.
This paper presents a conceptual approach for multimodally teach-
ing a robotic system how to pick-and-place an object, one of the
fundamental tasks not only in robotics, but in everyday life. By
establishing task and dialogue model separately, we aim to split
robot/task logic from interaction logic and to achieve modality in-
dependence for the teaching interaction. Finally, we elaborate on
an experimental implementation of our models for multimodally
teaching a UR-10 robot arm how to pick-and-place an object.

CCS CONCEPTS
• Human-centered computing→ Interaction techniques; In-
teraction paradigms; HCI theory, concepts and models.
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1 INTRODUCTION
Enabling efficient, safe, and natural human-robot collaboration
(HRC) has long been an ambitious aim among researchers. Fac-
tors such as the robot type, its capabilities, the environment, and
the task significantly influence the degree to which a human may
collaborate with a robotic system. Therefore, there exist extensive
bodies of research that focus on developing methods that allow
robotic systems to assist humans during tasks [4, 6, 9, 16, 17, 19].

One task that is of particular importance to humans is to physi-
cally relocate an object from an origin to a desired destination. This
process is also called pick-and-place. Picking-and-placing objects
of arbitrary shape or form is not only a necessity in professional
environments such as the industrial field but in a human’s everyday
life as well. It is due to our dexterous hands and cognitive abilities
that we are capable of grasping everyday objects barely facing any
challenges. On the other hand, robotic systems limited to their
kinematic capabilities and usually rely on a considerable amount of
data before gaining the ability to pick-and-place objects. This data
may include position and shape of the object or environmental con-
ditions that require collision avoidance procedures while carrying
the object. Traditionally, robotic systems are programmed to deal
with one clearly specified pick-and-place task. While this approach
is suitable in static environments where the system always operates
under the same conditions, it lowers the degree to which a human
may collaboratively interact with it. To provide robotic systems
with the ability to carry out a task in a collaborative manner, they
can also be taught interactively [18–20, 23]. This approach enables
dealing with constantly changing requirements.

Natural human-robot interaction represents a key aspect in creat-
ing a cyber-physical environment that allows humans to smoothly
collaborate with robots. This can be achieved by giving humans
the opportunity to interact with such systems similar to how they
would interact with another human. During such interactions, hu-
mans use their voice, hands (e.g. finger pointing) or even gaze to
articulate information. Multimodal interaction is not only natural
but also enables humans to adapt to a situation at hand by using the
modality most suitable for communicating information. However,
enabling the use of multiple modalities in the context of robotics
commonly requires additional effort in designing and implementing
human-machine interaction.
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This paper contributes an almost entirely modality independent
pick-and-place task model that serves as a theoretical framework
for human-robot collaborative pick-and-place tasks. In parallel, we
design a dialogue model for the user to multimodally fill in and
control the former to teach the robot task in a natural way.

2 RELATEDWORK
In the 1980s, Lozano-Pérez et al. [13] presented HANDEY, a robotic
system dedicated towards carrying out pick-and-place operations.
The authors describe that the core of a pick-and-place task can be
divided into four phases. Given an object that is supposed to be pick-
and-placed, a robot needs a suitable grasp, a motion for approaching
and grasping the object, a motion towards the destination as well
as a motion for opening and retreating the gripper. Based on the
pick-and-place robot HANDEY, Jones and Lozano-Pérez [8] also
elaborate on the complexity and challenges of grasping. In contrast
to HANDEY, our model expands on the definition of a pick-and-
place task and is tailored to multimodal human-robot interaction.

To create an environment where humans and robots are able
to collaboratively interact with each other, researchers have inves-
tigated the challenges that arise during shared workspace-based
pick-and-place tasks [1, 6, 9]. Furthermore, the use and potential
of modalities such as gestures [2, 9, 12, 19, 20, 22, 23], gaze [17, 24],
speech [10, 11, 16, 21, 23], physically guiding a robot [6], and brain
computer interfaces (BCIs) [5, 25] has been explored. In some cases,
approaches already make use of multiple modalities [7, 11, 23, 24].

To our knowledge, there does not currently exist a generalized
definition of the pick-and-place task aimed towards enabling multi-
modal interaction from arbitrary input modalities. This is because
most works explore the potential of one specific modality. The
pick-and-place task model we propose is supposed to provide a
modality-independent foundation, which enables multimodal in-
teractions with a robot. In contrast to single-modality solutions,
multimodality enables users to freely choose or combine modalities
for a given task and does not force the use of one concrete modality.

3 MODEL DEFINITIONS
For teaching a robot how to pick-and-place an object, we require a
model that describes the task from an abstract perspective, a task
model. Additionally, we also need to develop an understanding for
how a human may interact with the system to teach the task, a
dialogue model. Following, we describe both of these models.

3.1 Pick-and-Place Task Model
Inspired by the literature and after thorough discussions, we deter-
mined the following parameters to be significant in order to define
a model for a broader scope of pick-and-place tasks.

• The Object that is supposed to be grasped.
• The Pregrasp, a position close to the object.
• The Grasp, a position in which the object can be grasped.
• The Force needed for closing the end-effector.
• The Postgrasp, a position into which the object was moved.
• The Destination for releasing the object.
• The Release indicator, determining whether the object may
be dropped or must be placed down carefully.

Specifically, our task model depends on the set of input parameters

𝐼 = {𝑂, 𝑃𝑟𝑒,𝐺, 𝐹, 𝑃𝑜𝑠𝑡, 𝐷, 𝑅}.
We define a pick-and-place task as a sequence of states 𝑆1, ..., 𝑆𝑛
where 𝑆1 represents the initial and 𝑆𝑛 the final state after releasing
the object. During our attempts to define the state of a robotic
system, we noticed that establishing a model that does not distin-
guish between the state of the robot’s arm, end-effector, and gained
knowledge about processed parameters may be confusing. Because
of this, we decided to define a state as a triple 𝑆 = (𝑆𝑎, 𝑆𝑔, 𝑆𝑚)
encompassing the state of the robot’s arm, gripper and internal
memory respectively. Figure 1 shows the visual representation of
a state. 𝑆𝑎 represents the state of the robot’s arm depending on a

Sa ; Sg

Sm

Figure 1: Pick-and-place task state 𝑆 comprising the state of
the robot’s arm 𝑆𝑎 , gripper 𝑆𝑔, and internal memory 𝑆𝑚 .

parameter provided by a human. Initially, this position is defined as
𝑃1 as the arm could be in an arbitrary configuration. Moreover, the
position in which the object is released represents the final position
𝑃𝑟 . The gripper state 𝑆𝑔 indicates whether the robot’s end-effector
is Open or Closed. Finally, the memory state 𝑆𝑚 represents the set
of parameters that have already been processed. The requirements
of these states are defined by Equation (1), (2) and (3) respectively.

𝑆𝑎 = {𝑎1, ..., 𝑎𝑛 | 𝑎1 = 𝑃1 ∧ 𝑎𝑛 = 𝑃𝑟 } (1)
𝑆𝑔 = {𝑔1, ..., 𝑔𝑛 | 𝑔1 = 𝑂 ∧ 𝑔𝑖 = 𝑂 ∨𝐶 ∀𝑖 > 1} (2)
𝑆𝑚 = {{𝑚1, ...,𝑚𝑛} | 𝑚1 = ∅ ∧𝑚𝑛 = 𝐼 } (3)

Next, it is important to clarify how the model transitions into an-
other state. Transitions occur when the human interacts with the
robot. Naturally, the system needs one of our defined parameters
𝑖 ∈ 𝐼 for continuously progressing with the task. However, a hu-
man should not be restricted by this requirement and still have
the opportunity to provide an arbitrary number of parameters
at any point during the task. As a result, we must distinguish
between different ways that a human may choose to interact with
the robotic system. Specifically, a human may decide to provide
an immediately required parameter 𝑝 ∈ 𝐼 or not, leading to dif-
ferent transition functions. In both cases, an arbitrary number of
additional parameters 𝑖 ∈ 𝐼 can still be provided. For the sake of
simplicity, we formally refer to a set of arbitrary parameters 𝑖 ∈ 𝐼 as
𝑖𝑘 = {𝑖1, ..., 𝑖𝑘 }. For 𝑘 = 0, 𝑖0 = ∅. In case a human decides to pass
parameters while not including an immediately required parameter
𝑝 ∈ 𝐼 , our transition function only causes the robotic system’s
memory to expand by the parameters provided, as defined by the
subsequent transition function.

𝑓 (𝑖𝑘 \ 𝑝) → 𝑆𝑚+1 = 𝑆𝑚 ∪ 𝑖1 ∪ ... ∪ 𝑖𝑘 .

On the other hand, we cannot provide a general transition function
in case the human provides an immediately required parameter
since the state transition sometimes results in a different outcome
as subsequently described in greater detail.
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Figure 2: Our pick-and-place task model. The initial and “bad” states have a dark background. All edges, except dashed ones,
indicate a modality independent interaction. Dashed edges imply guiding a robotic system into the desired position while
circumventing other states. Edges labeled with the term “Drop” indicate that the object was unintentionally dropped.

Object and Destination: Robotic systems sometimes need to
autonomously determine which object to pick in a multi-object or
cluttered scene. However, when multimodally interacting with the
system, the robot might mistakenly approach the wrong object. A
pick-and-place model that allows such scenarios should incorporate
a confirmation procedure where the approached candidate position
𝐶𝑜 is either accepted or rejected. If the candidate position matches
the human’s intention, the robot has successfully reached the posi-
tion 𝑃𝑜 . The same concept applies when passing the Destination
parameter to the system. Note that a human may still include an
arbitrary number of other parameters. As a result, the transition
functions for these parameters are defined as following.

𝑓 (𝑂 ∪ 𝑖𝑘 ) →
{
𝑆𝑎+1 = 𝑃𝑜 ∧ 𝑆𝑚+1 = 𝑆𝑚 ∪𝑂 ∪ 𝑖𝑘 if 𝐶𝑜 = 𝑂

𝑆𝑎+1 = 𝑃𝑐 ∧ 𝑆𝑚+1 = 𝑆𝑚 \𝐶𝑜 ∪ 𝑖𝑘 else

𝑓 (𝐷 ∪ 𝑖𝑘 ) →
{
𝑆𝑎+1 = 𝑃𝑑 ∧ 𝑆𝑚+1 = 𝑆𝑚 ∪ 𝐷 ∪ 𝑖𝑘 if 𝐶𝑑 = 𝐷

𝑆𝑎+1 = 𝑃𝑐 ∧ 𝑆𝑚+1 = 𝑆𝑚 \𝐶𝑑 ∪ 𝑖𝑘 else
Force: As the Force parameter is related to a robot’s end-effector, we
require a different transition function.When passing this parameter,
the system’s end-effector closes. This is why our transition function
for the force parameter is defined as

𝑓 (𝐹 ∪ 𝑖𝑘 ) → 𝑆𝑔+1 = 𝐶 ∧ 𝑆𝑚+1 = 𝑆𝑚 ∪ 𝐹 ∪ 𝑖𝑘 .

Note that we assume the system to re-open its end-effector after
the Release parameter is specified. Finally, in all the other cases, it
suffices to define passing an immediately required parameter 𝑝 ∈ 𝐼

and an arbitrary number of additional parameters 𝑖 ∈ 𝐼 as

𝑓 (𝑝 ∈ {𝑃𝑟𝑒,𝐺, 𝑃𝑜𝑠𝑡, 𝑅} ∪ 𝑖𝑘 ) → 𝑆𝑎+1 = 𝑃𝑝 ∧ 𝑆𝑚+1 = 𝑆𝑚 ∪ 𝑖𝑘 .

It is important to emphasize that these definitions are completely
modality independent. However, there is one modality that some-
times allows a human to circumvent states in our model, which is
by physically guiding the arm. Whenever a human decides to guide
the arm into the desired position, there is no specific need for a

confirmation procedure. Therefore, we consider this interaction a
special state transition based on the transition function

𝑓 (𝑝 ∈ {𝑂, 𝐷}) → 𝑆𝑎+1 = 𝑃𝑝 ∧ 𝑆𝑚+1 = 𝑆𝑚 ∪ 𝑝

where no additional parameters are passed. Figure 2 shows a full
cycle of our final pick-and-place task model.

3.2 Deriving a Dialogue Model
Based on our task model, we aim to define a dialogue model that
allows a human to multimodally teach a robotic system how to
pick-and-place an object. For this purpose, one could use an exact
reproduction of the task model. However, by focusing on types of
interactions that are relevant to the human rather than the exact
task-specific requirements in each state, we may significantly lower
the total number of dialogue states. On the other hand, the number
can also increase due to providing additional ways for interacting
with the system. As a result, these dialogue states serve as a natural
interface to the task model where state transitions can be triggered
through multimodal inputs. This also means that task model spe-
cific requirements stay hidden, and a human does not need any
knowledge about them. Examining our pick-and-place task model,
there exist two types of interactions that can be translated into a
general dialogue state, teaching parameters to the system and pro-
viding a confirmation. The only other dialogue state that represents
an exact match according to the task model is the task initializa-
tion. Consequently, our dialogue model can be broken down to the
following three general dialogue states.

(1) Execute: A dialogue state in which all task-related require-
ments are currently satisfied.

(2) Request: This dialogue state adapts to the current situation
by querying a required parameter. Furthermore, due to the
dynamic nature of our model, this state enables a human to
teach an arbitrary number of parameters.

(3) Confirm: Another adaptive dialogue state that generates an
utterance matching a human’s previous interaction.
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Figure 3: Derived dialogue model representation.

Figure 3 provides an overview of the dialogue model. The dialogue
states we have derived construct an interaction cycle where a hu-
man may choose an arbitrary modality for progressing in the task.
The only limitation to this modality independence lies in what
information can be communicated using certain modalities.

4 EXPERIMENTAL SYSTEM
We have implemented an experimental pick-and-place application
on a UR-10 robot based on our introduced task and dialogue model
(see Figure 4). The task model is implemented into a task-planning
software that requires the task description in the JSON format to
generate a JSON object-based state chart. By utilizing the MQTT
protocol, it further acts as an interface between the UR-10 robot arm
and our dialogue model implementation. To this end, we utilize the
dialogue platform stepDP. StepDP, the next iteration of SiAM-dp
[15], is a domain-independent dialogue platform that allows mod-
elling complex interactions between humans and machines. The
system incorporates a classification scheme that maps interactions
to a set of rules. A human making the statement

“robot, could you pick this and place it inside the box”

while pointing towards an object corresponding to “this”, could
be mapped to a rule that teaches the robot about the Object and
the Destination. In this case, the dialogue platform combines the
pointing gesture and speech using a mechanism called multimodal
fusion. Our system captures pointing gestures via the Microsoft
HoloLens 2 [14]. An index finger pointing gesture with a virtual
beam is implemented. For recognizing valid parameters, they were
integrated as so-called digital twins. Speech interaction is enabled
through the Cerence Studio [3] Natural Language Understanding
module. The language model follows an intent-based classification
schemewhere each intent can be used for firing rules in our dialogue
model. Furthermore, the module enables us to define key terms
that need to be extracted (e.g. the Object or the Destination). For
simplification purposes, our final dialogue model implementation
does not query the Pregrasp, Force, and Postgrasp as individual
parameters. As we found these parameters particularly difficult
to teach, they are directly embedded into the Grasp parameter
instead. Some observations that we made during our preliminary
experiments with the system are discussed in the next section.

Figure 4: Experimental pick-and-place application.

5 DISCUSSION
There exist several limitations and noteworthy aspects that we
need to discuss. Our implementation relies on processing pointing
gestures using the Microsoft HoloLens 2, which introduces a depen-
dence on the device that might need to be compensated. We also
noticed that, due to the size of the virtual beam, a human has to be
precise when pointing towards the digital twin. Additionally, our
approach suffers from a scalability issue as we would need a digital
twin for each newly introduced valid parameter that a human may
point towards. For future implementations in an intelligent environ-
ment, one could foresee an image recognition-based approach for
detecting such parameters instead. Furthermore, when instructing
the robot using speech, the language model we use needs to match
the instruction to an intent, meaning that it might need to cover a
large vocabulary. Another limitation of our approach is that one
cannot currently teach the robot different grasping motions as the
grasp applied is based on a parameter’s respective descriptor. This
limitation can only be overcome by physically guiding the arm. On
the other hand, stepDP’s modality fusion has not caused any issues
during our experiments, always enabling the choice of an arbitrary
modality for teaching the robot new parameters.

6 CONCLUSION
This paper describes an approach for multimodally teaching a
robotic system a pick-and-place task. We elaborated on our nearly
modality independent pick-and-place task model and the dialogue
model we derive for interacting with the system. Furthermore, we
provided an overview of our experimental implementation that
incorporates the use of multimodal inputs for interacting with a
UR-10 robot. Finally, we discussed several aspects in relation to
our preliminary experiments. In order to establish an even more
dynamic teach-in procedure, we plan on investigating how mul-
timodal inputs can be used for teaching a robotic system how to
pick-and-place different objects. We also aim to put a stronger focus
on the aspect of grasping, which turns out to be challenging due
to object-based (e.g. shape, size and texture) and environmental
constraints (e.g. the surface an object is placed on).
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