
Proceedings of Machine Learning Research vol TBD:1–15, 2024 3rd Conference on Causal Learning and Reasoning

Lifted Causal Inference in Relational Domains

Author names withheld

Editor: Under Review for CLeaR 2024

Abstract
Lifted inference exploits symmetries in probabilistic graphical models by using a representative for
indistinguishable objects, thereby speeding up query answering while maintaining exact answers.
Even though lifting is a well-established technique for the task of probabilistic inference in rela-
tional domains, it has not yet been applied to the task of causal inference. In this paper, we show
how lifting can be applied to efficiently compute causal effects in relational domains. More specif-
ically, we introduce parametric causal factor graphs as an extension of parametric factor graphs
incorporating causal knowledge and give a formal semantics of interventions therein. We further
present the lifted causal inference algorithm to compute causal effects on a lifted level, thereby dras-
tically speeding up causal inference compared to propositional inference, e.g., in causal Bayesian
networks. In our empirical evaluation, we demonstrate the effectiveness of our approach.
Keywords: Causal graphical models, lifted probabilistic inference, interventional distributions

1. Introduction

A fundamental problem in the research field of artificial intelligence for an intelligent agent is to
plan and act rationally in an environment following a relational structure. To compute the best pos-
sible action in a perceived state, the agent considers the available actions and chooses the one with
the maximum expected utility. When computing the expected utility of an action that intervenes
on a specific variable, it is crucial to deploy the semantics of an intervention instead of a typical
conditioning on the observed (Pearl, 2009, Chapter 4). When calculating the effect of an interven-
tion, a specific variable is set to a fixed value and all incoming probabilistic causal influences of this
variable must be ignored for the specific query. It is therefore fundamental to deploy the semantics
of an intervention instead of the typical conditioning to correctly determine the effect of an action.

Over the last years, causal graphical models became a widely used formalism to answer ques-
tions concerning the causal impact of a treatment variable on an outcome variable. These models
combine probabilistic modeling with causal knowledge, enabling the computation of the effect of an
action that intervenes on a particular variable. As our world is inherently relational (i.e., it consists
of objects and relations between those objects), it is particularly important to have models that rep-
resent the relational structure between objects in addition to capturing causal knowledge. However,
commonly applied causal graphical models focus on propositional representations while at the same
time relational models lack the ability to efficiently apply causal knowledge for inference. There-
fore, we aim to combine the best of both worlds to allow for efficient causal inference in relational
domains. In particular, this paper deals with the problem of efficiently computing causal effects in
models representing objects and their causal relationships to each other.

© 2024 .

Previous work. To perform causal effect estimation in causal graphical models, there has been a
considerable amount of work and most of this work focuses on models of propositional data (Spirtes
et al., 2000; Pearl, 2009). Some works extend propositional factor graphs (FGs) by adding edge di-
rections to enable the computation of the effect of interventions (Frey, 2003; Winn, 2012). Maier
et al. (2010) show that propositional models are insufficient to represent causal relationships within
relational domains as required by real-world applications. To express causal dependencies within
relational domains, Maier et al. (2013) introduce so-called relational causal models but focus on
learning relational causal models from observed data. Most of the other related work covering re-
lational causal models also deals with the problem of learning a causal model from relational data
(e.g., Lee and Honavar, 2015, 2016). Prior work on the estimation of causal effects in relational
domains applies propositional probabilistic inference (Arbour et al., 2016; Salimi et al., 2020) and
thus does not scale for large graphs. Consequently, there is a lack of efficient algorithms to com-
pute causal effects in relational domains. In probabilistic inference, lifting exploits symmetries in
a relational model, allowing to carry out query answering more efficiently while maintaining exact
answers (Niepert and Van den Broeck, 2014). First introduced by Poole (2003), parametric factor
graphs (PFGs) and lifted variable elimination (LVE) allow to perform lifted probabilistic inference,
i.e., to exploit symmetries in a probabilistic graphical model, resulting in significant speed-ups for
probabilistic query answering in relational domains. Over time, LVE has been refined by many
researchers to reach its current form (De Salvo Braz et al., 2005, 2006; Milch et al., 2008; Kisyński
and Poole, 2009; Taghipour et al., 2013a; Braun and Möller, 2018). PFGs are well-studied for many
years and have been developed further to efficiently perform probabilistic inference not only for
single queries but also for sets of queries (Braun and Möller, 2016), to incorporate probabilistic
inference over time (Gehrke et al., 2018, 2020), and, among other extensions, to allow for decision
making by following the maximum expected utility principle (Gehrke et al., 2019a,b; Braun and
Gehrke, 2022). Markov logic networks are another lifted representation and have been extended
to incorporate maximum expected utility as well (Apsel and Brafman, 2012). Nevertheless, when
a decision-making agent plans for the best action to take, previous works improperly apply con-
ditioning, as also suggested by Russell and Norvig (2020, Chapter 16), instead of the notion of an
intervention (i.e., actions are treated as evidence). Treating actions as evidence, however, is incorrect
as noted by Pearl (2009, Chapter 4). To correctly handle the semantics of an action, the notion of an
intervention (Pearl et al., 2016) has to be applied. Therefore, in this paper, we close the gap between
PFGs and causal inference in relational domains by introducing parametric causal factor graphs as
an extension of parametric factor graphs incorporating causal knowledge to allow for lifted causal
inference, thereby enabling efficient decision making using the notion of an intervention.

Our contributions. PFGs are well-established models coming with LVE as a mature lifted in-
ference algorithm, allowing for tractable probabilistic inference with respect to domain sizes in
relational domains. We extend PFGs by incorporating causal knowledge, resulting in parametric
causal factor graphs (PCFGs) for which we define a formal semantics of interventions. Having de-
fined a formal semantics of interventions in PCFGs, we show how causal effects can be efficiently
computed, even for multiple simultaneous interventions. More specifically, we introduce PCFGs
as an extension of PFGs as well as the lifted causal inference (LCI) algorithm that operates on
a lifted level to drastically speed up causal inference compared to propositional causal inference
(e.g., in causal Bayesian networks). Apart from the theoretical investigation of PCFGs and the LCI
algorithm, we provide an empirical evaluation confirming the efficiency of LCI.

2

LIFTED CAUSAL INFERENCE IN RELATIONAL DOMAINS

Structure of this paper. Section 2 introduces both FGs and PFGs as undirected probabilistic
graphical models. Thereafter, in Section 3, we define PCFGs as an extension of PFGs incorporat-
ing causal knowledge and provide a formal semantics of interventions in PCFGs. In Section 4, we
introduce the LCI algorithm operating on a PCFG and show how LCI computes causal effects on a
lifted level to avoid grounding the PCFG as much as possible. Afterwards, in our empirical evalua-
tion in Section 5, we investigate the speed-up of LCI compared to performing propositional causal
inference both in causal Bayesian networks and in directed FGs before we conclude in Section 6.

2. Preliminaries

We begin by introducing FGs as propositional probabilistic models and afterwards continue to de-
fine PFGs which combine probabilistic models and first-order logic to allow for tractable prob-
abilistic inference with respect to domain sizes in relational domains. An FG is an undirected
graphical model to compactly encode a full joint probability distribution between random vari-
ables (randvars) (Frey et al., 1997; Kschischang et al., 2001). Similar to a Bayesian network (Pearl,
1988), an FG factorises a full joint probability distribution into a product of factors.

Definition 1 (Factor Graph) An FG G = (V ,E) is a bipartite graph with node set V = R ∪Φ
where R = {R1, . . . , Rn} is a set of variable nodes (randvars) and Φ = {ϕ1, . . . , ϕm} is a set
of factor nodes (functions). There is an edge between a variable node Ri and a factor node ϕj in
E ⊆ R×Φ if Ri appears in the argument list of ϕj . A factor is a function that maps its arguments
to a positive real number, called potential. The semantics of G is given by

PG =
1

Z

m∏
j=1

ϕj(Aj)

with Z being the normalisation constant and Aj denoting the randvars connected to ϕj .

Example 1 Figure 1 shows a toy example of an FG modelling the relationships between a com-
pany’s revenue, its employee’s competences, and training of its employees. More specifically, there
are randvars Qual.ti indicating the quality of a training program ti, randvars Comp.ej describ-
ing the competence of an employee ej , randvars Train.ej .ti specifying whether employee ej has
been trained with training program ti, and a randvar Rev denoting the revenue of the company. In
this particular example, there is a single company with four employees alice, bob, dave, and eve
and there are two training programs t1 and t2 each employee can be trained with. The randvars
Qual.ti, Comp.ej , and Rev can take one of the values {low,medium, high} and the randvars
Train.ej .ti are Boolean. The factors ϕi

1 encode the prior probability distribution for the quality of
a training program, the ϕi

2 encode the relationship between the quality of a training program and
an employee being trained with that program, the ϕi

3 encode the relationship between an employee
being trained by a specific training program and the competence of that employee, and the ϕi

4 en-
code the relationship between the competence of an employee and the revenue of the company. The
input-output pairs of the factors are omitted for brevity.

We continue to define PFGs, first introduced by Poole (2003), which combine probabilistic models
and first-order logic. In particular, PFGs use logical variables (logvars) as parameters in randvars
to represent sets of indistinguishable randvars. Each set of indistinguishable randvars is represented
by a so-called parameterised randvar (PRV), defined as follows.

3

Rev

Comp.bobComp.alice Comp.dave Comp.eve

ϕ3
4

ϕ1
4 ϕ2

4

ϕ4
4

Train.alice.t1

Train.alice.t2

Train.bob.t1

Train.bob.t2

Train.dave.t1

Train.dave.t2

Train.eve.t1

Train.eve.t2

ϕ1
3

ϕ5
3

ϕ2
3

ϕ6
3

ϕ3
3

ϕ7
3

ϕ4
3

ϕ8
3

Qual.t1

Qual.t2

ϕ1
1

ϕ1
2 ϕ2

2 ϕ3
2 ϕ4

2

ϕ2
1ϕ5

2 ϕ6
2 ϕ7

2 ϕ8
2

Figure 1: A toy example of an FG modelling the interplay of a company’s revenue and its em-
ployee’s competences, which, in turn, can be improved by training employees with a
specific training program. We omit the input-output pairs of the factors for brevity.

Definition 2 (Parameterised Random Variable) Let R be a set of randvar names, L a set of
logvar names, and D a set of constants. All sets are finite. Each logvar L has a domainD(L) ⊆D.
A constraint is a tuple (X , CX) of a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆
×n

i=1D(Xi). The symbol ⊤ for C marks that no restrictions apply, i.e., CX = ×n
i=1D(Xi). A PRV

R(L1, . . . , Ln), n ≥ 0, is a syntactical construct of a randvar R ∈ R possibly combined with
logvars L1, . . . , Ln ∈ L to represent a set of randvars. If n = 0, the PRV is parameterless and
forms a propositional randvar. A PRV A (or logvar L) under constraint C is given by A|C (L|C),
respectively. We may omit |⊤ in A|⊤ or L|⊤. The termR(A) denotes the possible values (range) of
a PRV A. An event A = a denotes the occurrence of PRV A with range value a ∈ R(A).

Example 2 Consider R = {Qual, T rain,Comp,Rev} for quality, training, competence, and
revenue, respectively, L = {E, T} with D(E) = {alice, bob, dave, eve} (employees) and D(T) =
{t1, t2} (training programs), combined into PRVs Qual(T), Train(E, T), Comp(E), and Rev.

A parametric factor (parfactor) describes a function, mapping argument values to positive real num-
bers (called potentials), of which at least one is non-zero.

Definition 3 (Parfactor) Let Φ denote a set of factor names. We denote a parfactor g by ϕ(A)|C
with A = (A1, . . . , An) being a sequence of PRVs, ϕ: ×n

i=1R(Ai) 7→ R+ being a function with
name ϕ ∈ Φ mapping argument values to a positive real number called potential, and C being a
constraint on the logvars of A. We may omit |⊤ in ϕ(A)|⊤. The term lv(Y) refers to the logvars
in some element Y , a PRV, a parfactor, or sets thereof. The term gr(Y|C) denotes the set of all
instances (groundings) of Y with respect to constraint C.

4

LIFTED CAUSAL INFERENCE IN RELATIONAL DOMAINS

Qual(T) Train(E, T) Comp(E) Rev
g1 g2 g3 g4

Figure 2: A visualisation of a PFG entailing equivalent semantics as the FG shown in Fig. 1. Each
parfactor represents a group of factors and each PRV represents a group of randvars.

Example 3 Take a look at the parfactor g3 = ϕ3(Train(E, T), Comp(E))|⊤. Following Exam-
ples 1 and 2, g3 specifies 2 · 3 = 6 input-output pairs ϕ3(true, low) = φ1, ϕ3(true,medium) =
φ2, ϕ3(true, high) = φ3, and so on with φi ∈ R+. Further, we have lv(g3) = {E, T} and
gr(g3) = {ϕ3(Train(alice, t1), Comp(alice)), . . . , ϕ3(Train(eve, t2), Comp(eve))}. Thus, in
this specific example, the parfactor g3 is able to represent a set of eight factors.

A PFG is then build from a set of parfactors {g1, . . . , gm}.

Definition 4 (Parametric Factor Graph) A PFG G = (V ,E) is a bipartite graph with node set
V = A ∪ G where A = {A1, . . . , An} is a set of PRVs and G = {g1, . . . , gm} is a set of
parfactors. A PRV Ai and a parfactor gj are connected via an edge in G (i.e., {Ai, gj} ∈ E) if Ai

appears in the argument list of gj . The semantics of G is given by grounding and building a full
joint distribution. With Z as the normalisation constant and Ak denoting the randvars connected
to ϕk, G represents the full joint distribution

PG =
1

Z

∏
gj∈G

∏
ϕk∈gr(gj)

ϕk(Ak).

Example 4 Figure 2 depicts a PFG G consisting of four parfactors g1 = ϕ1(Qual(T)), g2 =
ϕ2(Qual(T), T rain(E, T)), g3 = ϕ3(Train(E, T), Comp(E)), and g4 = ϕ4(Comp(E), Rev).
Assuming that both the ranges of the PRVs and the domains of the logvars follow Examples 1
to 3, G is a lifted representation entailing equivalent semantics as the FG shown in Fig. 1. Each
parfactor g1, . . . , g4 represents a group of factors ϕi

1, . . . , ϕi
4, respectively, and each PRV Qual,

Train, Comp, and Rev represents a group of randvars. Consequently, the size (i.e., the number of
parfactors and PRVs) of the PFG is independent of domain sizes whereas in the propositional FG,
each additional employee or training increases the size of the graph.

The underlying assumption here is that there are indistinguishable objects, in this specific example
employees, which can be represented by a representative. In particular, the assumption is that the
competence of every employee has the same influence on the company’s revenue, i.e., all factors ϕi

4

encode the same mappings (and the same holds for the ϕi
1, ϕi

2, and ϕi
3, meaning training programs

are indistinguishable as well). In other words, it is relevant for the company how many employees
are competent but it does not matter which exact employees are competent. Note that the definition
of PFGs also includes FGs, as every FG is a PFG containing only parameterless randvars.

In the following, we extend PFGs to incorporate causal knowledge, represented by directed
edges defining cause-effect relationships between PRVs.

5

3. Parametric Causal Factor Graphs

PFGs are well-established models for which lifted inference algorithms exist to allow for tractable
probabilistic inference with respect to domain sizes. Even though Frey (2003) introduces directed
FGs on a ground level, PFGs have not yet been extended to incorporate causal knowledge.

Therefore, we now introduce PCFGs as an extension of PFGs incorporating causal knowledge
and give a formal semantics of interventions therein. A PCFG extends an PFG by incorporating
causal knowledge in form of directed edges—that is, each edge between two PRV (via a parfactor)
describes a cause-effect relationship. For example, an edge A1 → A2 indicates that A1 is a cause of
A2 and, consequently, A2 is an effect of A1. In particular, in a PCFG, each parfactor is connected to
a single child and zero or more parents, matching the definition of directed FGs in the ground case
given by Frey (2003). Further, as commonly required in directed graphical models such as causal
Bayesian networks, we restrict a PCFG to be acyclic.

Definition 5 (Parametric Causal Factor Graph) A PCFG is a directed graph G = (V ,E) with
node set V = A ∪G where A = {A1, . . . , An} is a set of PRVs and G = {g1, . . . , gm} is a set of
directed parfactors. A directed parfactor g = ϕ(A)→Ai

|C withA = (A1, . . . , Ak) being a sequence of

PRVs, ϕ: ×k
i=1R(Ai) 7→ R+ being a function, and C being a constraint on the logvars of A, maps

its argument values to a positive real number (potential). Again, we may omit |⊤ in ϕ(A)→Ai

|⊤ . Ai ∈
A denotes the child of ϕ(A)→Ai whereas all Aj ∈ A with j ̸= i are the parents of ϕ(A)→Ai . For
each directed parfactor g, there are edges (g,Ai) ∈ E and (Aj , g) ∈ E (for all Aj ̸= Ai). A PCFG
is an acyclic graph, that is, there is no sequence of edges (g1, A1), (A1, g2), . . . , (gℓ, Aℓ), (Aℓ, g1)
in E. The semantics of G is given by grounding and building a full joint distribution, identical to the
semantics of a PFG, i.e., with Z as the normalisation constant,Ak denoting the randvars connected
to ϕk, and Ak

i ∈ Ak specifying the child of ϕk, G represents

PG =
1

Z

∏
gj∈G

∏
ϕk∈gr(gj)

ϕk(Ak)
→Ak

i .

Example 5 Consider the PCFG G depicted in Fig. 3. G represents the same full joint probability
distribution as the PFG shown in Fig. 2. In particular, both models are identical except for the
fact that G contains directed edges instead of undirected edges between parfactors and PRVs. Each
parfactor represents a group of directed factors and thus, grounding G results in a directed FG. Fol-
lowing previous examples by assuming D(T) = {t1, t2}, for example g1 = ϕ1(Qual(T))→Qual(T)

represents gr(g1) = {ϕ1(Qual(t1))
→Qual(t1), ϕ1(Qual(t2))

→Qual(t2)}.

In the following, we denote the parents of a PRV A by PaG(A) = {ϕ→Ai | A = Ai} and the child
of a parfactor ϕ by ChG(ϕ(A)→Ai) = Ai in a PCFG G. If the context is clear, we omit the subscript
G. Before we define the semantics of an intervention in a PCFG, we briefly revisit the notion of
d-separation in directed acyclic graphs and afterwards apply it to PCFGs.

3.1. d-Separation in Parametric Causal Factor Graphs

The notion of d-separation (Pearl, 1986) provides a graphical criterion to test for conditional inde-
pendence in directed acyclic graphs. Frey (2003) translates the notion of d-separation to directed
FGs. We build on the definition of d-separation in directed FGs to define d-separation in PCFGs.

6

LIFTED CAUSAL INFERENCE IN RELATIONAL DOMAINS

Qual(T) Train(E, T) Comp(E) Rev
g1 g2 g3 g4

Figure 3: An illustration of a PCFG encoding the same full joint probability distribution as the PFG
given in Fig. 2. The only difference between the PCFG and the PFG is that the PCFG
contains directed edges instead of undirected edges between PRVs and parfactors.

Definition 6 (d-separation) Let G = (A∪G,E) be a PCFG. Given three disjoint sets of randvars
X , Y , and Z (subsets of

⋃
A∈A gr(A)), we say that X and Y are conditionally independent given

Z, written as X ⊥⊥ Y | Z, if the nodes in Z block all paths from the nodes in X to the nodes in
Y in the directed FG obtained by grounding G. A path is a connected sequence of edges (A1, g1),
. . . , (Aℓ, gℓ) with (Ai, gi) ∈ E or (gi, Ai) ∈ E, i.e., a path is not restricted to follow the arrow
directions of the edges. Note that it is therefore also possible for a path to pass from a parent of a
factor to another parent of the factor. A path is blocked by the nodes in Z if

1. the path contains a variable from Z, or

2. the path passes from a parent of a directed factor ϕ to another parent of ϕ, and neither the
child of ϕ nor any of its descendants are in Z.

The semantics of d-separation in PCFGs is defined on a ground level. However, it is possible to
check for d-separation on a lifted level without having to ground the PCFG.

Example 6 Consider again the PCFG depicted in Fig. 3 and assume we want to check whether
Qual(t1) ⊥⊥ Comp(bob) | Train(bob, t1) holds. In this case, we have assigned T = t1 and
E = bob, so we only need to examine paths involving this particular assignment of logvars. More
specifically, all PRVs on the path with overlapping logvars, i.e., all PRVs having T or E as a logvar,
are bound to the same assignment. Therefore, all paths from Qual(t1) to Comp(bob) pass through
Train(bob, t1), meaning the conditional independence statement in question holds. Note that if
there were other paths involving PRVs with non-overlapping logvars, i.e., logvars not involved in
the sets X and Y , all randvars represented by those PRVs need to be in Z to block those paths.

The concept of d-separation is important for the computation of the effect of an intervention in the
sense that all non-causal paths, so-called backdoor paths, need to be blocked. We next show how
these backdoor paths are blocked when performing an intervention and give a formal semantics of
an intervention in a PCFG.

3.2. Semantics of Interventions in Parametric Causal Factor Graphs

To correctly handle the semantics of an action, for example in the setting of a decision-making
agent planning for the best action to take, we have to differentiate between seeing (conditioning)
and doing (intervention). Let us take a look at the PCFG shown in Fig. 3 again. If we observe (see)
an event Train(bob, t1) = true, our belief about the probability distribution of Qual(t1) might
change. More specifically, the probability of t1 having a high quality might be higher when observ-
ing Train(bob, t1) = true than without the observation under the assumption that the probability of

7

training an employee increases if the quality of a training program is high. However, if we are inter-
ested in the effect an action setting Train(bob, t1) to true, denoted as do(Train(bob, t1)) = true,
has on the remaining PRVs, we have to ensure that the belief about the probability of t1 having a
high quality remains unchanged as the action itself has no influence on the probability distribution
of Qual(t1). Therefore, it is crucial to avoid the propagation of information against the edge direc-
tions whenever we are interested in the effect of an action. That is, if we are interested in the effect
a specific randvar R′ has on another randvar R, all so-called backdoor paths from R to R′ must be
blocked. A backdoor path is a non-causal path, i.e., a backdoor path from R to R′ is a path that
remains after removing all outgoing edges of R.

To account for backdoor paths and correctly handle the semantics of an action, we employ the
notion of an intervention. An intervention on a randvar R, denoted as do(R = r) with r ∈ R(R),
changes the structure of a PCFG by removing all parent edges of R and setting R to the value
r. By removing the parent edges, all backdoor paths are removed. Formally, the semantics of an
intervention in a PCFG is defined as below, following the definition of an intervention in Bayesian
networks provided by Pearl et al. (2016).

Definition 7 (Intervention) Let R = {R1, . . . , Rn} be the set of randvars obtained by grounding
a PCFG G = (A ∪G,E), i.e., R =

⋃
A∈A gr(A). An intervention do(R1 = r1, . . . , Rk = rk)

changes the underlying probability distribution such that each factor ϕ(R′
1, . . . , R

′
i, . . . , R

′
ℓ)

→R′
i

with R′
i ∈ {R1, . . . , Rk} is replaced by a factor ϕ′(R′

1, . . . , R
′
i, . . . R

′
ℓ)

→R′
i with

ϕ′(R′
1 = r′1, . . . , R

′
i = r′i, . . . , R

′
ℓ = r′ℓ)

→R′
i =

{
1 if ri = r′i
0 if ri ̸= r′i.

The remaining ϕ(R′
1, . . . , R

′
i, . . . , R

′
ℓ)

→R′
i with R′

i /∈ {R1, . . . , Rk} remain unchanged.

By fixing the values of all parent factors, all parent influences are (virtually) removed from the
model and hence initial backdoor paths are (virtually) removed from the model as well. Having
defined the semantics of an intervention in a PCFG, we are now interested in efficiently computing
interventional distributions, i.e., the result of queries that contain do-expressions. Note that in a
PCFG, all causal effects are identifiable per definition and thus, we do not have to rewrite a query
containing do-expressions according to the do-calculus (Pearl, 1995) to obtain an equivalent query
free of do-expressions. In particular, we do not estimate causal effects from observed data but
instead compute them in a fully specified model as every PCFG encodes a full joint probability
distribution which we can modify according to the definition of an intervention and afterwards
query the modified distribution to answer any query containing do-expressions.

We next introduce the LCI algorithm, which handles interventions in PCFGs efficiently by di-
rectly applying the semantics of an intervention on a lifted level.

4. Efficient Causal Effect Computation in Parametric Causal Factor Graphs

Now that we have introduced PCFGs, we study the problem of efficiently computing the effect of
interventions in PCFGs. A major advantage of using PCFGs instead of propositional models such as
causal Bayesian networks is that we mostly do not have to fully ground the model to compute the ef-
fect of interventions. Consider again the PCFG illustrated in Fig. 3 and assume we want to compute

8

LIFTED CAUSAL INFERENCE IN RELATIONAL DOMAINS

Algorithm 1: Lifted Causal Inference
Input : A PCFG G = (A ∪G,E), and a query P (R1, . . . , Rℓ | do(R′

1 = r′1, . . . , R
′
k = r′k))

with {R1, . . . , Rℓ} ⊆
⋃

A∈A gr(A) and {R′
1, . . . , R

′
k} ⊆

⋃
A∈A gr(A).

Output: The interventional distribution P (R1, . . . , Rℓ | do(R′
1 = r′1, . . . , R

′
k = r′k)).

1 G′ ← Split parfactors in G based on each R′
i ∈ {R′

1, . . . , R
′
k}

2 foreach R′
i ∈ {R′

1, . . . , R
′
k} do

3 foreach ϕ(A1, . . . , Az)
→R′

i ∈ PaG′(R′
i) do

4 foreach assignment (a1, . . . , az) ∈ R(A1)× · · · × R(Az) do

5 Set ϕ(a1, . . . , az) =

{
1 if (a1, . . . , az) assigns R′

i = r′i
0 if (a1, . . . , az) assigns R′

i ̸= r′i
6 end
7 end
8 end
9 P ← Call LVE to compute P (R1, . . . , Rℓ) in G′

10 return P

the interventional distribution P (Rev | do(Train(bob, t1)) = true) in G. Note that when inter-
vening on a randvar, we have to treat it differently than other randvars in the same group on which
we do not intervene. An intervention do(Treat(bob, t1)) = true sets the value of Treat(bob, t1)
to true and thus, we have to treat bob different from alice, dave, and eve—in other words, not all
employees are indistinguishable anymore. Nevertheless, and this is the crucial point, we can still
treat alice, dave, and eve as indistinguishable when computing the interventional distribution.

4.1. The Lifted Causal Inference Algorithm

We now introduce the LCI algorithm to compute the interventional distribution P (R1, . . . , Rℓ |
do(R′

1 = r′1, . . . , R
′
k = r′k)) in a PCFG G. The entire LCI algorithm is shown in Alg. 1.

First, LCI splits the parfactors in G based on the intervention variables R′
i ∈ {R′

1, . . . , R
′
k}. In

particular, splitting parfactors in G results in a modified PCFG G′ entailing equivalent semantics
as G (De Salvo Braz et al., 2005). The procedure of splitting a parfactor works as follows. Recall
that R′

i = A(L1 = l1, . . . , Lj = lj), l1 ∈ D(L1), . . . , lj ∈ D(Lj), is a particular instance of a
PRV A(L1, . . . , Lj), that is, it holds that R′

i ∈ gr(A). The idea behind the splitting procedure is
that we would like to separate gr(A) into two sets gr(A) \ {R′

i} and {R′
i}, as R′

i has to be treated
differently than the remaining instances of A. Therefore, every parfactor g for which there is an
instance ϕ ∈ gr(g) such that R′

i appears in the argument list of ϕ is split. Formally, splitting a
parfactor g replaces g by two parfactors g′|C′ and g′′|C′′ and adapts the constraints of g′|C′ and g′′|C′′ .
The constraints C ′ and C ′′ are altered such that the inputs of g′|C′ are restricted to all sequences
that contain R′

i and the inputs of g′′|C′′ are restricted to the remaining input sequences. After the
splitting procedure, the semantics of the model remains unchanged as the groundings of G′ are still
the same as the groundings of the initial model G—they are just arranged differently across the
sets of ground instances. Having completed the split of all respective parfactors, LCI next modifies
the parents of R′

i, i.e., the underlying probability distribution encoded by G′ is modified according
to the semantics of the intervention do(R′

i = r′i) with r′i ∈ R(R′
i). More specifically, as R′

i is

9

Train(E, T)

Train(bob, t1)

Qual(T) Comp(E) Rev
g1|⊤

g2|C2

g′2|C′
2

g3|C3

g′3|C′
3

g4|⊤

Figure 4: A visualisation of the modified PCFG obtained after altering the PCFG shown in Fig. 3 by
splitting g2 and g3 to separate Train(bob, t1) from Train(E, T). Here, the constraints
C2 as well as C3 include all instances of Train(E, T) except for Train(bob, t1) and C ′

2

as well as C ′
3 are restricted to the single instance Train(bob, t1) of Train(E, T). Note

that the graph size remains significantly smaller than for the fully grounded model.

fixed on r′i, all parents ϕ ∈ PaG′(R′
i) of R′

i are altered such that all input sequences assigning
R′

i = r′i map to the potential value one while all other input sequences map to zero. Finally, LCI
computes the result for P (R1, . . . , Rℓ) in the modified model G′, which is equivalent to the result
for P (R1, . . . , Rℓ | do(R′

1 = r′1, . . . , R
′
k = r′k)) in the original model G. To perform query

answering in G′, LVE can be applied to G′ by simply ignoring the edge directions as the semantics
of a PFG and a PCFG are defined identically.

Before we continue to examine the correctness of Alg. 1, we take a look at an example.

Example 7 Consider again the PCFG G shown in Fig. 3 and assume we would like to compute
P (Rev | do(Train(bob, t1)) = true). As Train(bob, t1) is a particular instance of Train(E, T),
we have to split the parfactors g2 and g3 while g1 as well as g4 keep ⊤ as their constraint. Fig-
ure 4 shows the modified PCFG G′ obtained after splitting g2 and g3 based on the intervention
on Train(bob, t1). In G′, Train(bob, t1) is now a separate node in the graph, connected to two
newly introduced parfactors. In particular, g2 has been replaced by two parfactors g2|C2

and g′2|C′
2

with constraints C2 = ((E, T), {(alice, t1), (alice, t2), (bob, t2), (dave, t1), (dave, t2), (eve, t1),
(eve, t2)}) and C ′

2 = ((E, T), {(bob, t1)}). In other words, g2|C2
is restricted to all instances of

Train(E, T) except for Train(bob, t1) and g′2|C′
2

is restricted to the instance Train(bob, t1) of

Train(E, T). Analogously, g3 has been replaced by two parfactors g3|C3
and g′3|C′

3

. To incorpo-

rate the semantics of do(Train(bob, t1)) = true, LCI next modifies the parents of Train(bob, t1),
i.e., LCI modifies g′2|C′

2

in this example. More specifically, g′2|C′
2

(Qual(t1) = q, Train(bob, t1) =

true) is set to one and g′2|C′
2

(Qual(t1) = q, Train(bob, t1) = false) is set to zero for all q ∈
R(Qual(t1)). Finally, LVE can be run to compute P (Rev) in G′, which is equivalent to the inter-
ventional distribution P (Rev | do(Train(bob, t1)) = true) in the original model G.

Due to the splitting of parfactors, it might be the case that there are PRVs in G′ having more parents
than they previously had in the original model G, as with Comp(E) in Fig. 4. The semantics of
the model, however, remains unchanged because

⋃
g∈G gr(g) =

⋃
g∈G′ gr(g). Given the way we

specified the semantics of an intervention in a PCFG, we can show that LCI correctly computes the
effect of interventions. In particular, as LCI directly applies Def. 7 by setting the parent factors of

10

LIFTED CAUSAL INFERENCE IN RELATIONAL DOMAINS

all variables we intervene on accordingly, the semantics of the modified model G′ is equivalent to
the semantics of interventions from Def. 7.

Corollary 1 Algorithm 1 computes the interventional distribution according to Def. 7.

Moreover, directly applying Def. 7 allows LCI to exploit the established LVE algorithm. By deploy-
ing LVE, LCI is able to perform tractable inference (i.e. LCI runs in polynomial time) with respect
to domain sizes for all PCFGs belonging to the class of domain-liftable models (Taghipour et al.,
2013b). The class of domain-liftable models includes all PCFGs containing only parfactors with at
most two logvars and all PCFGs containing only PRVs having at most one logvar.

Corollary 2 Algorithm 1 is able to perform tractable probabilistic inference with respect to domain
sizes for the class of domain-liftable models.

To summarise, LCI is a simple, yet effective algorithm to perform lifted causal inference, even for
interventions on large groups of randvars, as we investigate next.

4.2. Handling Interventions on Groups of Random Variables

LCI is able to handle both interventions on a single (ground) randvar as well as interventions on a
conjunction of multiple randvars efficiently. In particular, when intervening on multiple randvars
at the same time, LCI is able to treat those randvars as a group. For example, recall the employee
example and assume we want to train multiple employees simultaneously as a training program is
mostly offered not only for a single employee but for a group of employees. Then, it is not necessary
to split all trained employees into separate groups—it is sufficient to differentiate between trained
employees and all remaining employees. Formally, the interventions do(R′

1 = r′1, . . . , R
′
k = r′k) on

an arbitrary set of randvars {R′
1, . . . , R

′
k} can thus efficiently be handled by splitting the parfactors

in G such that all R′
i that are represented by the same PRV A and set to the same value r′i remain

grouped, equal to splitting on constraints in LVE. More specifically, LCI needs just a single split per
group and thus avoids manipulating the parents of each individual randvar separately. Furthermore,
it is also possible to intervene on a PRV (instead of intervening on a randvar). The semantics of
an intervention on a PRV A is given by do(A = a) = do(R1 = a, . . . , Rk = a) with gr(A) =
{R1, . . . , Rk}. Again, LCI is able to treat all randvars represented by A as a group and therefore is
not required to split the group. In contrast, in a propositional model, every object has to be treated
individually and therefore the parents for each randvar need to be manipulated separately.

Next, we investigate the practical performance of PCFGs and, in particular, the LCI algorithm
for the computation of interventional distributions.

5. Experiments

In this section, we evaluate the run times needed to compute the result of interventional queries
in Bayesian networks, directed FGs, and PCFGs. For our experiments, we use a slightly modi-
fied version of the PCFG given in Fig. 3 which can directly be translated into a Bayesian network
without having to combine multiple parent factors into a single conditional probability table. More
specifically, to obtain the corresponding directed FG, we simply ground the PCFG and to obtain
the equivalent Bayesian network, we use the transformation from directed FG to Bayesian network
given by Frey (2003). Note that the PCFG used in our experiments to demonstrate the practical

11

10

100

1000

10000

8 16 32 64 128 256 512 1024 2048 4096
d

tim
e

(m
s)

Lifted Variable Elimination (PCFG)

Variable Elimination (BN)

Variable Elimination (FG)

Figure 5: A comparison of the run times required to compute interventional distributions on differ-
ent graphical models encoding equivalent full joint probability distributions.

efficiency of lifted causal inference is rather small with four parfactors and PRVs, respectively, and
the gain we obtain from lifted inference further increases with models consisting of more PRVs.

We test the required run time for each of the three graphical models on different graph sizes
by setting the domain size of the employees to d = 8, 16, 32, . . . , 4096 and having a single train-
ing program for each choice of d (i.e., |D(E)| = d and |D(T)| = 1). Figure 5 shows the run
times needed to compute an interventional distribution for a single intervention in the modified
graph when running variable elimination on the directed FG, variable elimination on the Bayesian
network, and LVE on the PCFG. The results emphasise that the LCI algorithm, which internally
exploits LVE, overcomes scalability issues for large domain sizes as the run time of LVE, in con-
trast to the run times of variable elimination on the Bayesian network and the directed FG, does not
exponentially increase with d (y-axis is log-scaled). To conclude, PCFGs not only provide us with
expressive probabilistic graphical models for relational domains but also enable us to drastically
speed up causal inference by reasoning over sets of indistinguishable objects.

6. Conclusion

We introduce PCFGs to combine lifted probabilistic inference in relational domains with causal
inference, thereby allowing for lifted causal inference. PCFGs provide a powerful formalism to
represent causal relationships in relational domains that has been missing so far. To leverage the
power of lifted inference for causal effect computation, we present the LCI algorithm which operates
on a lifted level and thus allows us to perform tractable inference with respect to domain sizes in
relational domains. LCI is a simple, yet effective algorithm to compute the effect of (multiple
simultaneous) interventions, and builds on the well-founded LVE algorithm, thereby allowing LCI
to be plugged into parameterised decision models (Gehrke et al., 2019b) to compute the maximum
expected utility in accordance with Pearl (2009).

PCFGs open up interesting directions for future work. A basic problem is to learn a PCFG
directly from a relational database. Following up on learning PCFGs from data, another constitutive
problem for future research is to relax the assumption of having a fully directed PCFG at hand, i.e.,
to allow PCFGs to contain both directed and undirected edges at the same time and investigate the
implications for answering causal queries.

12

LIFTED CAUSAL INFERENCE IN RELATIONAL DOMAINS

References

Udi Apsel and Ronen I. Brafman. Lifted MEU by Weighted Model Counting. In Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12), pages 1861–1867. AAAI
Press, 2012.

David Arbour, Dan Garant, and David Jensen. Inferring Network Effects from Observational Data.
In Proceedings of the Twenty-Second ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-16), pages 715–724. Association for Computing Machinery,
2016.

Tanya Braun and Marcel Gehrke. Explainable and Explorable Decision Support. In Proceedings
of the Twenty-Seventh International Conference on Conceptual Structures (ICCS-22), pages 99–
114. Springer, 2022.

Tanya Braun and Ralf Möller. Lifted Junction Tree Algorithm. In Proceedings of KI 2016: Advances
in Artificial Intelligence (KI-16), pages 30–42. Springer, 2016.

Tanya Braun and Ralf Möller. Parameterised Queries and Lifted Query Answering. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), pages
4980–4986. IJCAI Organization, 2018.

Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. Lifted First-Order Probabilistic Inference. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-
05), pages 1319–1325. Morgan Kaufmann Publishers Inc., 2005.

Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. MPE and Partial Inversion in Lifted Probabilis-
tic Variable Elimination. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI-06), pages 1123–1130. AAAI Press, 2006.

Brendan J. Frey. Extending Factor Graphs so as to Unify Directed and Undirected Graphical Mod-
els. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI-
03), pages 257–264. Morgan Kaufmann Publishers Inc., 2003.

Brendan J. Frey, Frank R. Kschischang, Hans-Andrea Loeliger, and Niclas Wiberg. Factor Graphs
and Algorithms. In Proceedings of the Thirty-Fifth Annual Allerton Conference on Communica-
tion, Control, and Computing, pages 666–680. Allerton House, 1997.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In Pro-
ceedings of the Twenty-Third International Conference on Conceptual Structures (ICCS-2018),
pages 55–69. Springer, 2018.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Maximum Expected Utility. In
Proceedings of the Thirty-Second Canadian Conference on Artificial Intelligence (CANAI-19),
pages 380–386. Springer, 2019a.

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost
Steinhäuser. Lifted Maximum Expected Utility. In Proceedings of the First International Work-
shop on Artificial Intelligence in Health (AIH-18), pages 131–141. Springer, 2019b.

13

Marcel Gehrke, Ralf Möller, and Tanya Braun. Taming Reasoning in Temporal Probabilistic Re-
lational Models. In Proceedings of the Twenty-Fourth European Conference on Artificial Intelli-
gence (ECAI-20), pages 2592–2599. IOS Press, 2020.

Jacek Kisyński and David Poole. Constraint Processing in Lifted Probabilistic Inference. In Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI-09), pages
293–302. AUAI Press, 2009.

Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor Graphs and the Sum-
Product Algorithm. IEEE Transactions on Information Theory, 47:498–519, 2001.

Sanghack Lee and Vasant Honavar. Lifted Representation of Relational Causal Models Revisited:
Implications for Reasoning and Structure Learning. In Proceedings of the UAI 2015 Conference
on Advances in Causal Inference, pages 56–65. CEUR, 2015.

Sanghack Lee and Vasant Honavar. On Learning Causal Models from Relational Data. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), pages 3263–3270.
AAAI Press, 2016.

Marc Maier, Brian Taylor, Huseyin Oktay, and David Jensen. Learning Causal Models of Relational
Domains. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-
10), pages 531–538. AAAI Press, 2010.

Marc Maier, Katerina Marazopoulou, David Arbour, and David Jensen. A Sound and Complete
Algorithm for Learning Causal Models from Relational Data. In Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence (UAI-13), pages 371–380. AUAI Press, 2013.

Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kaelbling.
Lifted Probabilistic Inference with Counting Formulas. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI-08), pages 1062–1068. AAAI Press, 2008.

Mathias Niepert and Guy Van den Broeck. Tractability through Exchangeability: A New Perspec-
tive on Efficient Probabilistic Inference. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence (AAAI-14), pages 2467–2475. AAAI Press, 2014.

Judea Pearl. Fusion, Propagation, and Structuring in Belief Networks. Artificial Intelligence, 29:
241–288, 1986.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, 1988.

Judea Pearl. Causal Diagrams for Empirical Research. Biometrika, 82:669–688, 1995.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2nd edition,
2009.

Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. Causal Inference in Statistics: A Primer.
Wiley, 1st edition, 2016.

14

LIFTED CAUSAL INFERENCE IN RELATIONAL DOMAINS

David Poole. First-Order Probabilistic Inference. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI-03), pages 985–991. Morgan Kaufmann Pub-
lishers Inc., 2003.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson, 4th edition,
2020.

Babak Salimi, Harsh Parikh, Moe Kayali, Lise Getoor, Sudeepa Roy, and Dan Suciu. Causal Rela-
tional Learning. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data, pages 241–256. Association for Computing Machinery, 2020.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT Press,
2nd edition, 2000.

Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel. Lifted Variable Elimination:
Decoupling the Operators from the Constraint Language. Journal of Artificial Intelligence Re-
search, 47:393–439, 2013a.

Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, and Hendrik Blockeel. Com-
pleteness Results for Lifted Variable Elimination. In Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics (AISTATS-13), pages 572–580. PMLR, 2013b.

John Winn. Causality with Gates. In Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics (AISTATS-12), pages 1314–1322. PMLR, 2012.

15

	Introduction
	Preliminaries
	Parametric Causal Factor Graphs
	d-Separation in Parametric Causal Factor Graphs
	Semantics of Interventions in Parametric Causal Factor Graphs

	Efficient Causal Effect Computation in Parametric Causal Factor Graphs
	The Lifted Causal Inference Algorithm
	Handling Interventions on Groups of Random Variables

	Experiments
	Conclusion

