
Evaluation Metrics for XAI: A Review, Taxonomy,
and Practical Applications
Md Abdul Kadir

German Research Center for Artificial Intelligence
Saarbrücken, Germany

abdul.kadir@dfki.de

Amir Mosavi
Obuda University

Budapest, Hungary
amir.mosavi@uni-obuda.hu

Daniel Sonntag
German Research Center for Artificial Intelligence

Saarbrücken, Germany
University of Oldenburg

Oldenburg, Germany
daniel.sonntag@dfki.de

Abstract—Within the past few years, the accuracy of deep
learning and machine learning models has been improving
significantly while less attention has been paid to their respon-
sibility, explainability, and interpretability. eXplainable Artificial
Intelligence (XAI) methods, guidelines, concepts, and strategies
offer the possibility of models' evaluation for improving fidelity,
faithfulness, and overall explainability. Due to the diversity of
data and learning methodologies, there needs to be a clear
definition for the validity, reliability, and evaluation metrics of ex-
plainability. This article reviews evaluation metrics used for XAI
through the PRISMA systematic guideline for a comprehensive
and systematic literature review. Based on the results, this study
suggests two taxonomy for the evaluation metrics. One taxonomy
is based on the applications, and one is based on the evaluation
metrics.

Keywords—XAI, machine learning, deep learning, explainable
artificial intelligence, explainable AI, explainable machine learn-
ing; metrics; evaluation

I. INTRODUCTION

Explainable Artificial Intelligence (XAI[1]) focuses on un-
derstanding the reasoning behind machine learning and deep
learning models’ decisions across a range of AI applications[2,
3]. XAI’s goal is to aid users in building a comprehensive and
accurate understanding of these algorithms, fostering confi-
dence in their outputs[4, 5, 6]. Despite the many methods for
explainability, researchers still lack consensus on the precise
nature and practical properties of an Explanation[7]. Future
research should define explainability and develop structured
formats of Explanations, accommodating as many aspects as
possible. Explainability in psychology, tied to trust, trans-
parency, and privacy, identifies humans as final explanation
recipients[8]. This emphasizes the necessity of interactive
visual explanations in XAI and the need for psychometric re-
search. Various studies in AI sub-domains call for fundamental
research on explainability measurement[9, 10, 11].
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Research has focused on explaining methods with neural
and Bayesian networks and extracting rule clusters, aiming to
generate human-interpretable rules without sacrificing accu-
racy [12]. Despite several attempts to survey and categorize
explainability methods [13], there’s consensus on the need for
explanations to be comprehensible to laypeople and provide
actionable information [14, 15, 16]. These studies underscore
the need for systematic analysis of explainability metrics. This
paper aims to systematically review XAI studies, focusing on
articles that conceptually and theoretically address explainabil-
ity and propose methods for evaluating XAI. The framework
found that explainers develop explainability methods evaluated
using metrics, often based on complex models or numerical
approximations [17, 18, 19, 20]. However, the absence of
robust evaluation metrics may underestimate the correlation
between a trained model and its visual explainer, leading to
potential inaccuracies in explanations. Hence, it is crucial to
develop a reliable evaluation metric for ensuring high-quality,
compelling, and informative visual explanations.

II. METHODOLOGY

The methodology, following the PRISMA guideline, in-
tegrates a comprehensive literature search with systematic
screening. The primary database is Scopus1, supplemented by
Google Scholar2 for additional or missing literature. Arxiv3

is also utilized for early-version articles in AI. Initial queries,
including ’explainable artificial intelligence’, ’XAI’, ’explain-
able AI’, ’explainable machine learning’, and ’explainable
deep learning’, resulted in 6122 articles on various explainable
ML and deep learning methods and applications. Following
the PRISMA4 guideline, the research methodology, depicted
in Fig. 1, refines the initial 6122 documents down to pertinent
articles on XAI evaluation metrics. The challenge lies in the

1https://www.scopus.com/home.uri
2https://scholar.google.com
3https://arxiv.org
4http://www.prisma-statement.org/
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Fig. 1. The research methodology flow diagram follows the PRISMA
guidelines to identify relevant literature and screen it to narrow down the
amount of literature.

diverse definitions of explainability across applications and do-
mains, and there’s no common keyword for efficient screening.
Therefore, we utilized a broad list of keywords and phrases
typically associated with explainability. It’s noteworthy that the
terms ‘evaluation metrics’ or ‘metrics’ alone are insufficient
for identifying relevant articles, due to diverse communication
of explainability. Thus, combining these with explainability-
related keywords effectively filters out irrelevant articles.

Consequently, screening the keywords of metrics, eval-
uation, and explainability through the entire fields of the
articles results in 884 documents. Following keywords related
to explainability were explored in this stage, i.e., Action-
ability, Transparency, Transferability, Completeness, Satisfac-
tion, Sensitivity, Stability, Informativeness, Robustness, Under-
standability, Monotonicity, Comprehensibility, Correctability,
Interpretability, Efficiency, Explicability, Explicitness, Faith-
fulness, Intelligibility, Interactivity, Interestingness after fur-
ther screening the titles, abstract and keywords the number
of relevant articles is reduced to 225. A secondary screening,
involving in-depth reading, eliminated 155 articles focusing
on metrics unrelated to explainability, often measuring per-
formance and briefly discussing explainability. This screening
further reduced the relevant articles to 75. Subsequent selec-
tion of original and highly relevant studies led to the final
70 articles, which are categorized according to the metrics
presented in the tables.

Fig. 2. The initial queries for XAI literature resulted in 6122 articles. The
graph also indicates an upward trend in XAI research.

Fig. 3. After the first screening for explainability evaluation metrics, the
literature review revealed that there were less than half a thousand research
articles containing explanation metrics in 2022. However, there is an upward
trend in the use of explanation metrics in research.

III. RESULT

XAI research has seen rapid expansion over the past five
years, as depicted in Fig. 2 based on the number of published
articles. The initial search yielded 6122 XAI-focused articles.
However, only a small portion included evaluation metrics for
measuring explainability—critical for assessing explanation
quality—amounting to about 884 articles. The distribution of
these results over the past five years is shown in Fig. 3.

Table I lists key studies on Explainable Artificial Intelli-
gence (XAI) from 2021 to 2023. These papers explore various
XAI themes, tools, and applications across sectors like health-
care, education, and industry. Techniques utilized include deep
learning, knowledge distillation, and statistical testing to build
accessible AI models. Various assessment metrics, algorithms,
and XAI tools such as SHAP, LIME, and LEAF were used to
enhance model interpretability. Overall, the studies aim to en-
hance human-AI collaboration and address AI implementation
challenges. As AI applications increase, so does the need for
explainability, leading to proposed evaluation metrics for AI-
generated explanations.

Chinu and Bansal [21] highlights the explanation metric’s
importance in assessing relief application responses. Schwalbe
and Finzel [13] notes the growing popularity of explainable
techniques and metrics. In power quality distribution, explain-



TABLE I
THIS TABLE PROVIDES A SUMMARY OF THE MOST RELEVANT LITERATURE

THAT APPLIED XAI TECHNIQUES IN SOLVING PROBLEMS WITH
REAL-WORLD DATA. IT HIGHLIGHTS THE RESEARCH THAT HAS UTILIZED

XAI TECHNIQUES AND THEIR PRACTICAL APPLICATIONS.

Reference Method Application

[21] 2023 Explainable AI: To Reveal the
Logic of Black-Box Models

Interpretable;
Transparency;
Quality metrics;

[22] 2023 A taxonomy for XAI methods XAI;
Interpretability;
Meta-analysis

[23] 2023 XAI Evaluation metric:
Traceability rate

Drug recommendation;
Explainability;
Traceability

[24] 2023 Explaining Machine Learning
Model Explanations

Interpretability;
GUI for Explanation

[25] 2022 XAI methods evaluation
metric

Educational data;
Learning analytics

[26] 2022 Multi-modal image-fusion
model knowledge
distillation and
explainable AI

XAI in Medicine;
Image generation

[27] 2022 Measuring Explainability and
Trustworthiness of Power
Quality Disturbances Classifiers

XAI in Power;
Power quality
disturbances (PQDs)

[28] 2022 A New Explainable Deep
Learning Framework for
Cyber Threat Discovery

Anomaly detection;
IIoT;
industrial networks

[29]2022 Putting explainable AI
in context: institutional
explanations for medical AI

AI and health;
Epistemic risk;
Ethical design

[30] 2022 Evaluating eXplainable artificial
intelligence tools for hard disk
drive predictive maintenance

Predictive
maintenance

[31] 2022 XAI in IC defect detection Explainable arch.;
Hierarchical clustering

[32] 2020 Knowledge-Aware
eXplainable AI

Knowledge-base;

[33] 2022 A human-agent architecture for
explanation formulation

HCI;
Multi-agent systems

[12] 2021 Notions of explainability and
evaluation approaches for
explainable artificial intelligence

Evaluation methods;
Notions of
explainability

[34] 202 Explainable artificial intelligence
for bias detection

Computerised
Tomography

[35] 2021 LEAF to evaluate local
linear XAI methods

Local explanation;
ML Auditing

[36] 2021 XAI in
anomaly detection

Anomaly detection;
Cryptomining

[37] 2021 XAI for Default Privacy
Setting Prediction

Privacy preference

[38] 2022 Explaining AI with Narratives Explainability, NL

[39] 2021 Interaction with Explanations User interaction

[38] 2022 A survey on improving NLP
models with human explanations

User interaction

[40] 2020 Explanatory Interactive
Image Captioning

Image captioning

ability metrics help ensure reliable decisions, says Machlev
et al. [27]. [28] underlines the explanation metric’s role in de-
tecting IoT data anomalies for security enhancement. Despite
extensive research, a consensus on explanation definition and
assessment is needed, according to Vilone and Longo [41].
While many works contribute to this field, Li et al. [32] notes
the need for a clear taxonomy and systematic review. Further,
Mualla et al. [33], Li et al. [42] propose new explanation
techniques, reusing LIME’s metric for evaluation.

Meanwhile, Palatnik de Sousa et al. [34] argue that per-
formance metrics achieved by AI models can give users the
impression that there is no bias. Hence, explaining classifica-
tion and evaluating the explanation based on proper metrics
is necessary. Additionally, Amparore et al. [35] addresses the
problem of identifying a clear and unambiguous set of metrics
for evaluating Local Linear Explanations. They also propose
a LEAF framework for explanation evaluation to end-users.

Finally, for practical medical applications, Theunissen and
Browning [29] suggests that metrics for evaluating post-hoc
explanations are necessary. The metrics should evaluate the
accuracy of the explanation, and there should be procedures for
auditing the system to prevent biases and failures from going
unaddressed. In summary, various researchers have proposed
different metrics and frameworks to evaluate the quality of
explanations produced by AI models. While there is still
no consensus on how to define and evaluate explanations
and explainability metrics’ importance in understanding AI
models and ensuring trustworthy decision-making cannot be
overstated.

In our recent review of application-related research, we
have identified that the evaluation technique is not the sole
focus of interest but rather the explanation method itself.
We found that in many cases, explanation evaluation was
only qualitatively assessed, and the quality of the explanation
was taken for granted without using any specific evaluation
technique. However, several terminologies were reintroduced,
such as local explanation, attribute, post-hoc explanation,
sensitivity, trustworthiness, causal interpretation, traceability,
and auditing. We discovered that sensitivity measurement was
used frequently in the literature. This method is closely related
to the taxonomy in 6f Fig. III. The sensitivity measurement
evaluates the impact of input features on the model’s output,
which helps to identify the most critical features. It allows
us to understand the contribution of each input feature to the
model’s prediction and to evaluate the explanation’s quality.
However, other terminologies, such as trustworthiness, causal
interpretation, traceability, and auditing, can provide additional
insights into the explanation’s reliability and usability.

An alternative taxonomy is proposed in FIig. 5. In our recent
review of application-related research, we have identified that
the evaluation technique is not the sole focus of interest but
rather the explanation method itself. We found that in many
cases, explanation evaluation was only qualitatively assessed,
and the quality of the explanation was taken for granted
without using any specific evaluation technique. However,
several terminologies were reintroduced, such as local expla-
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Fig. 4. Proposed taxonomy based the methodologies of the explainability
evaluation

nation, attribute, post-hoc explanation, sensitivity, trustwor-
thiness, causal interpretation, traceability, and auditing. We
discovered that sensitivity measurement was used frequently in
the literature. This method is closely related to the taxonomy
in Fig. 5. The sensitivity measurement evaluates the impact of
input features on the model’s output, which helps to identify
the most critical features. It allows us to understand the
contribution of each input feature to the model’s prediction
and to evaluate the explanation’s quality. However, other
terminologies, such as trustworthiness, causal interpretation,
traceability, and auditing, can provide additional insights into
the explanation’s reliability and usability.

In Table I, we found that local explanation is necessary
for plenty of applications. A local explanation can be defined
as an explanation that we get individual basis based on each
decision the model makes. They can be post-hoc and generated
after deploying a machine-learning model. Evaluation of local
explanation can be done in three ways. After removing the
relevant feature from the dataset based on the explanation,
they retrained a proxy model after evaluating the new model’s
performance on untouched test data. Suppose the test accuracy

XAI [2]

Interpretablity [13]
Transparency [21]
Auditing [35]
Traceability [23]
User satisfaction [61]

Sensitivity [45]

Local Explanation [62]

Attribution [17]
Causal interpretation [63]
Dependent feature [63]
Saliency [64]

Fig. 5. Proposed taxonomy based on the XAI applications

of the newly created model is lower than the original model's
accuracy. In that case, training on data with missing features
creates an entirely different model than the original model.
It signifies that the features removed from training data con-
tribute to the original model's decision. This method has high
computational demand due to the retraining process.

The second approach is ground-truth-based evaluation, and
the explanation is compared with the ground-truth explanation
data. Different distance metrics are used to identify how far the
explanation is from the ground truth. Ground truth can also be
user feedback on a model’s local explanation [57, 65]. Some
researchers used weakly supervised localization techniques to
see how a saliency-based explanation can be meaningful to
localize an object in an image [56, 60]. They proposed some
metrics called SSR, Point Game, Average drop, Increase confi-
dence, and Win. Kapishnikov et al. [54], Rguibi et al. [66] used
Accuracy Information Curves (AICs), Softmax Information
Curves (SICs), and Performance Information Curves PICs XAI
evaluation. [67, 68, 69] has used the area under perturbation
curve (AOPC) for understanding the decisions of CNN using
MoRF curve and evaluates the explainability of their proposed
model. Recently, Veldhuis et al. [70] leveraged explainable
AI methods for DNA analysis. Xi et al. [23], Apicella et al.
[71, 72], Schinle et al. [73] reported their experiment results
with MoRF curve or its variations as reliable evaluation
metrics.

There has been tremendous interest in unsupervised tech-
niques for evaluating explanations in the last decade. Most of
these methods work based on removing or adding information
from the input data and measuring the changes in the output of
the mode. SIC and AIC scores [54] Non-sensitivity [55] scores
are measured based on the output of the model. When data
is fed to an input, the output scores represent the influence
of essential and nonimportant features in the model output.
Similarly, removing features from input data also influences
the model. Sensitivity-N can measure the influence [74], and
Faithfulness Correlation [52]. The feature removal from the
input is a tricky process, and the feature removal should have
the property of missingness [75]. Such algorithms are also
proposed by [46, 67].



A. Sensitivity analysis

Explanation sensitivity refers to how much a machine
learning model’s output is affected by different types of
explanations or interpretability methods applied to it. In other
words, it measures how much the output of a model changes
when different explanations are provided for it. Sensitivity
analysis is a key part of explainable AI and helps researchers
and practitioners understand how reliable and robust the ex-
planations of machine learning models are. Table II represents
the sensitivity analysis methods used for the evaluation of the
XAI methods. The definition of classic explanation sensitivity
[45] can be expressed as follows: For any j ∈ {1, ..., d},

[∇xϕ(f(x))]j = lim
ϵ→0

ϕ(f(x+ ϵej))− ϕ(f(x))

ϵ
(1)

where ej ∈ Rd is the jth coordinate basis vector, with jth

entry one and all others zero. It quantifies how the explanation
changes as the input is varied infinitesimally where f is the
model, ϕ is the explainer ej is the changes in the input features
and ϵ is the deviation.

Table II includes various research articles that employ
Explainable Artificial Intelligence (XAI) methods in different
applications. Sensitivity Analysis is one of the XAI methods
used to analyze the impact of input features on the model's
output. Some of the applications include Covid-19 diagnosis,
self-driving cars, brain-computer interface systems, seismic
facies classification, predicting the functional impact of gene
variants, discovering bias in structured pattern classification
datasets, smart agriculture, compression, feature selection,
volcano detection, optical water types, feature importance
analysis, threat detection, survival analysis, and COVID-19
screening using chest X-ray images. The XAI methods em-
ployed in these applications include LIME, SHAP, Multi-
Objective Sensitivity Pruning, Graph embedding, Grad-CAM,
Gaussian processes, Hierarchical Interpretable models, Attack
trees, Bayesian networks, and Grad-CAM++. They employed
an explanation evaluation technique for evaluating the output
of the explanation methods. For example, Kim and Joe [77]
used sensitivity analysis for evaluating explanations in self-
driving cars' decision-making process. In anomaly detection
explanation, sensitivity can be used to evaluate the model's
decision [93].

B. Faithfulness Correlation and Faithfulness Estimate metrics

Faithfulness correlation measures the linear relationship be-
tween the model predictions and the training data. It quantifies
how well the model can capture the patterns and relationships
in the training data. A high faithfulness correlation indicates
that the model faithfully detects patterns and information in
the training data. In contrast, a low faithfulness correlation
indicates that the model may be over-fitting or under-fitting
the data. Faithfulness Correlation [52] iteratively replaces a
random subset of given attributions with a baseline value.
Then it measures the correlation between the attribution subset
and the difference in function output. On the other hand,
Faithfulness Estimate [53] computes the correlation between

TABLE II
SENSITIVITY ANALYSIS FOR XAI METHODS

Reference Method Application

[76] 2022 Covid-MANet Sensitivity analysis;
Lesion localisation

[77] 2022 An XAI method
for convolutional
neural networks

Self driving car;
CNN;
Sensitivity of features

[78] 2022 XAI in brain-computer
interface systems

Brain–computer

[79] 2022 Quantifying the sensitivity
of seismic
facies classification
to seismic attribute selection

Sensitivity of
seismic attributes;
Seismic
geomorphology

[80] 2022 Predicting KCNQ1
variants with ANN

Protein structure

[81] 2022 Discover bias Understanding bias;
Fairness

[82] 2022 Explainable AI at Work!
What Can It Do for
Smart Agriculture?

Explainability in
Agriculture data

[83] 2022 MOSP: Pruning of
Deep Neural Networks

Neural network
compression

[84] 2022 A Feature Selection Method
via Graph Embedding and
Global Sensitivity Analysis

Feature engineering

[85] 2022 XAI in
Detection
of VDS

Volcanic
Deformation analysis

[86] 2022 Learning Relevant Features
of Optical Water Types

See water

[87] 2021 Deep belief network framework
and its application for feature
importance analysis

Feature engineering

[72] 2021 Explanations in terms
of Hierarchically organised
Middle Level Features

Feature understanding

[88] 2021 Adversarial policy
training against deep
reinforcement learning

Preventing
adversarial attacks

[89] 2021 Efficient Estimation of the
ANOVA Mean Dimension,
with an Application to
Neural Net Classification

Dimensionality
reduction

[90] 2021 Bayesian Networks for
Online Cybersecurity
Threat Detection

Threat detection and
analysis

[91] 2020 Explaining
unreliable ML
survival models

Reducing data demand

[92] 2020 Evaluation of scalability
and degree of fine-tuning

Medical imaging;
Low training data

[93] 2020 A deep Taylor decomposition
of one-class models

Outlier detection;
Unsupervised learning

[63] 2020 Interpretable ML
A Brief History

Dependent features;
Causal interpretation

[94] 2019 XAI NLP; Biomedical
Classification

Drawback
of blackbox model



probability drops and attribution scores on various points.
Table III summarizes XAI studies, including the Faithfulness
Correlation and Faithfulness Estimate metrics. According to
[52], the faithfulness of an explanation function g to a predictor
f at a point x with a subset size of |S| is defined as follows:

µF (f, g;x) = corr
S∈( [d]

|S|)

Å∑
i∈S

(
g(f, x)i, f(x)− f(x[xs=x̂s]

)ã
(2)

d is the dimension of x. xs are particular features to a
baseline value x̂s. Table III lists various studies and research
papers that showcase the application of faithfulness metrics
in explainable AI (XAI). Faithfulness is one of the essential
metrics used to evaluate the performance of XAI methods.
It measures how well an AI model’s explanations align with
its underlying decision-making processes. For instance, in the
medical image analysis study by Jin et al. [14], the authors
proposed guidelines to evaluate the faithfulness of clinical
XAI models. Similarly, the G-LIME method introduced by
Li et al. [42] aims to provide interpretable deep learning by
ensuring the faithfulness of local interpretations of deep neural
networks using global priors. Other studies in the table that uti-
lize faithfulness metrics include those in autonomous driving
and natural language processing. These studies illustrate the
significance of faithfulness in XAI and its application across
different domains.

C. Monotonicity Metric

Monotonicity Metric introduced by Luss et al. [49] gener-
ates contrastive explanations with monotonic attribute func-
tions. Arya et al. [48] further elaborates on these metrics.
It starts from a reference baseline to incrementally place
each feature on the baseline surface from a sorted attribution
vector, measuring the effect on model performance. Recently
Monotonicity Metric has been employed by several studies
[112, 113, 114, 115].

D. Pixel Flipping

Pixel Flipping [51] captures the impact of perturbing pixels
in descending order according to the attributed value on the
classification score. Wullenweber et al. [116], Pitroda et al.
[117] used Pixel Flipping metric for evaluating explanations
for the predictions of COVID-19 cough classifiers and lung
disease classification.

dk(p) =

∑
N∈digits(k) N(p)∑M

i=0

∑
N∈digits(i) N(p)

(3)

dk(p) is the effect of pixel p on model corresponds to class k,
digits(i) define the sample from a class of M class problem
and N(p) is the models output probability.

E. Region Perturbation

Region Perturbation introduced by Aopc Samek et al. [50]
is an extension of Pixel-Flipping to flip an area rather than
a single pixel. It has been used in several XAI experiments.

TABLE III
FAITHFULNESS CORRELATION AND FAITHFULNESS ESTIMATE METRICS

IN XAI

Reference Method Application

[95] 2023 Guidelines for
explanation evaluation

Clinical data

[42] 2023 Statistical learning for local
interpretations of deep
neural networks using
global priors

Explanation refinement;
LIME

[96] 2022 Explainability of Deep
Vision-Based Autonomous
Driving Systems

Autonomous driving

[97] 2022 Evaluating the Evaluation
of Explainable Artificial
Intelligence in Natural
Language Processing

Human catered AI;
Natural language
understaing

[98] 2022 Explanations in
Autonomous Driving

Autonomous driving

[99] 2022 Human Interpretation
of Saliency-based
Explanation Over Text

Human interaction;
Explainability in
natural language
understanding

[100] 2022 Explainable predictive
modelling for limited
spectral data

Robustness of
ML models

[101] 2022 Debiased-CAM to mitigate
image perturbations with
faithful visual explanations
of machine learning

Robustness of prediction;
Faithfulness of model

[102] 2022 Information fusion as
an integrative
cross-cutting enabler

Legal and ethical
aspect of ML;
Clinical decision making

[103] 2022 Interpretability versus
Explainability

Framework for
interpretability
and explainability

[104] 2022 Layerwise Sequential
Selection (CNN)
of Discernible Neurons

Understanding
visual explantion

[105] 2022 On Glocal Explainability
of Graph Neural Networks

Explainability;
Graph neural network

[106] 2022 Toward Practical Usage
of the Attention Mechanism
as a Tool for Interpretability

Attention as explanation

[107] 2022 Explainable Deep Learning:
A Field Guide
for the Uninitiated

Deep Learning
mode Understanding

[108] 2022 Explainable deep
learning in healthcare

Imterpretable deep
learning in healthcare

[109] 2022 Explainable Machine
Learning to Identify
the Most Important
Predictors of Infidelity

Personal relationship

[110] 2020 Efficient Estimation of
General Additive
Neural Networks

Medical decision
support system

[111] 2019 Explainability in
human–agent systems

General explainabiliy



TABLE IV
PIXEL FLIPPING

Reference Method Application

[118] 2023 Explaining the
black-box smoothly

Counterfactual reasoning;
Medical
image understanding

[95] 2023 Post-hoc
explanation from DNN

Multi-modal medical
image;
Post-hoc explanation

[119] 2022 Perturbation Effect General explainability;
Time series data

[120] 2022 Decoding
psychophysiological EEG

Nuro-signal
understanding;

[121] 2022 Spatiotemporal
Prediction Model

Spatiotemporal
dynamics

[122] 2022 Sensitivity of Logic
Learning Machine

Autonomous driving;
Feature importance

[123] 2021 Saliency by bilateral
perturbations

General explainability

[124] 2021 Local Explanation
Approach for Predictive
Process Monitoring

Predictive process
monitoring;
Process mining

[125] 2020 Reliable Local
Explanations

Sound analysis

[126] 2020 Interpretation by
counterfactual

Medical image
analysis

[127] 2019 Explanations for
Attributing DNN Predictions

General XAI

Table II summarizes XAI studies, including Region Perturba-
tion. Region perturbation metric gives Area Under Perturbation
which defines by the following equation.

AOPC =
1

L+ 1

≠ L∑
k=0

f
(
x
(0)
MoRF

)
− f

(
x
(k)
MoRF

)∑
p(x)

(4)

Where f is the model, L is the number of samples, ⟨.⟩p(x)
denotes the average over all samples and x

(k)
MoRF is the cumu-

lative removal of up to kth Most Relevant Feature (MoRF).
Singla et al. [118] propose a counterfactual approach to

explain black-box models used for chest X-ray diagnosis. Jin
et al. [14] discuss generating post-hoc explanations from deep
neural networks for multi-modal medical image analysis tasks.
Šimić et al. [119] introduce a perturbation effect metric to
counter misleading validation of feature attribution methods in
deep learning for time-series data. Huang et al. [121] focus on
understanding spatiotemporal prediction models, while Narteni
et al. [122] study the sensitivity of logic learning machines
in safety-critical systems. Khorram et al. [123] propose an
integrated gradient-optimized saliency method for explainable
AI in medical imaging. In contrast, Mehdiyev and Fettke [124]
provide a general overview of explainable AI for process
mining with a focus on a novel local explanation approach.
Mishra et al. [125] discuss reliable local explanations for
machine listening, and Lenis et al. [126] introduce domain-
aware medical image classifier interpretation by counterfactual
impact analysis. Finally, Fong and Vedaldi [127] explain deep

neural network predictions for computer vision tasks without
giving detain on the evaluation of explanation. Most of the
papers used pixel flipping or variants of it to evaluate the
local explanations. Table IV presents the list of papers that
have mentioned pixel flipping technique in their papers.

F. Selectivity

Selectivity [128] is a metrics for evaluation used in several
recent XAI models, which measures how quickly a prediction
function starts to drop when removing features with the highest
attributed values. It can be calculated using the AOPC curve
or pixel flipping curve.

G. Sensitivity-N

Sensitivity-N [47] computes the correlation between the
sum of the attributions and the variation in the target output
while varying the fraction of the total number of features and
averages it over several test samples. This metric had been
recently used by [129, 130]. For a number of features n in data,
selectivity-n defines the sum of the attributions

∑N
i=1 R

c
i (x)

and variation in the target output correlates on a particular
task for different explanation algorithms. Rc

i (x) attributions
of class c of input pixel i and N is the total number of pixels
in the input i. gradient multiplied element-wise by the input

H. IROF

IROF introduced by Rieger and Hansen [46] computes the
area over the curve per class for sorted mean importance of
feature segments (superpixels) as they are iteratively removed
(and prediction scores are collected), averaged over several test
samples. Fel et al. [131] elaborate on the model explainability
using IROF. They investigate how good the explanation is by
evaluating algorithmic stability measures.

IROF (ej) =
1

N

N∑
n=1

AOC

Å
F (X l

n)y
F (X l

0)y

ãL
l=0

(5)

X l
n denotes an augmented version of image X , with the top

l of L segments replaced by their mean value due to high
relevance. F represents the model, N the total test images,
and AOC quantifies the area under a curve.

I. Infidelity

Infidelity is an evaluation metric introduced by [45]. It
represents the expected mean square error between 1) a dot
product of an attribution and input perturbation and 2) a dif-
ference in model output after significant perturbation. Lv et al.
[105], Mercier et al. [132], Chatterjee et al. [133], Sahatova
and Balabaeva [134], Meister et al. [135] leverage this metric
in their experiments and comparisons.

INFD(ϕ, f, x) = E
I∼µI

[(
ITϕ(f, x)− (f(x)− f(x− I))

)2]
(6)

ϕ represents the explainer, f the model, and x the input. I
signifies the deviation of input from baseline x0.



J. ROAD

ROAD (RemOve And Debias) introduced by Rong et al.
[44] measures the accuracy of the model on the test set in an
iterative process of removing k most important pixels, at each
step k most relevant pixels (MoRF order) are replaced with
noisy linear imputations. ROAD follows a similar approach to
AOPC; however, the feature removal is performed using noisy
approximation neighbors. To remove a pixel from an image,
ROAD uses the following equation.

xi,j = wd(xi,j+1 + xi,j−1 + xi+1,j + xi−1,j)+

wi(xi+1,j+1 + xi−1,j−1 + xi+1,j−1 + xi−1,j+1)
(7)

i, j denote pixel locations in an image. wi and wd are weight
factors for nearest and distant neighbors respectively, with
more weight given to the former in the experiment. Absent
edge pixels are treated as having a value of 0.

K. Sufficiency

Sufficiency [136] measures the extent to which similar
explanations have the same prediction label. For prediction
explanation, if a specific property (π) justifies the prediction
for an instance (x), then any other instance (x

′
) with the same

property (π) should also be classified similarly. In other words,
consistency is required in classifying instances with the same
property used for prediction justification. According to [136]
to Explanations E are intelligible if for any instance x ∈ X
and property, π ∈ E it is possible to assess whether π applies
to x. If so, they define this as a relation A(x

′
, π).

Cx =
{
x

′
∈ X : A(x

′
, e(x))

}
(8)

Cxis the set of instance that share same property as x’s
explanation and e is the explainer.

IV. DISCUSSION

Applied research has seen a rise in developing and evaluat-
ing explanation evaluation metrics. While some studies use es-
tablished metrics, many researchers propose their own, making
it difficult to benchmark and compare methods. Furthermore,
the lack of defined terminology complicates the process. How-
ever, there is potential to develop effective metrics, especially
in healthcare and security domains where robust explanations
are crucial [137, 138]. Establishing standard evaluation metrics
is necessary to assess effectiveness and accuracy, enabling
comparison and advancement in these domains.

V. CONCLUSIONS

This literature review presents two taxonomies aimed at
enhancing the classification of explainable AI (XAI) methods
and improving the evaluation metrics used for assessing ex-
plainability in machine learning. Evaluating model explainabil-
ity requires an interactive approach based on the psychological
construct. Our review explores terms like interpretability and
understandability in XAI evaluation. Human evaluation is
prone to bias, so a formal metric that can be experimentally
validated is recommended. This approach enables objective
assessment and comparison of explanations across models. A

formal definition of the metric will advance explainable AI
and promote trustworthy machine learning systems.
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and D. Sonntag, “XAINES: Explaining AI with narra-
tives,” KI - Künstliche Intelligenz, vol. 36, no. 3, pp.
287–296, Dec. 2022.

[39] M. Hartmann, I. Kruijff-Korbayová, and D. Sonntag,
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Gross, “A unified view of gradient-based attribution
methods for deep neural networks,” CoRR, vol.
abs/1711.06104, 2017. [Online]. Available: http://arxiv.

https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00505
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00505
https://arxiv.org/abs/2007.07584
https://www.sciencedirect.com/science/article/pii/S1566253521002335
https://www.sciencedirect.com/science/article/pii/S1566253521002335
http://arxiv.org/abs/1710.11063
https://doi.org/10.1145/1216295.1216316
https://doi.org/10.1145/1216295.1216316
https://openreview.net/pdf?id=SJOYTK1vM
https://www.mdpi.com/2079-9292/11/11/1775
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00928
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00928
https://www.sciencedirect.com/science/article/pii/S0167865520301240
https://www.sciencedirect.com/science/article/pii/S0167865520301240
https://www.sciencedirect.com/science/article/pii/S187249732100168X
https://www.sciencedirect.com/science/article/pii/S187249732100168X
https://www.sciencedirect.com/science/article/pii/S0950705122008735
https://www.sciencedirect.com/science/article/pii/S0950705122008735
https://ceur-ws.org/Vol-3014/paper4.pdf
https://ceur-ws.org/Vol-3014/paper4.pdf
http://arxiv.org/abs/1711.06104


org/abs/1711.06104
[75] P. Sturmfels, S. Lundberg, and S.-I. Lee, “Visualizing

the impact of feature attribution baselines,” Distill,
2020, https://distill.pub/2020/attribution-baselines.

[76] A. Sharma and P. K. Mishra, “Covid-MANet: Multi-
task attention network for explainable diagnosis and
severity assessment of COVID-19 from CXR images,”
Pattern Recognit., vol. 131, no. 108826, p. 108826, Nov.
2022.

[77] H.-S. Kim and I. Joe, “An XAI method for convolu-
tional neural networks in self-driving cars,” PLoS One,
vol. 17, no. 8, p. e0267282, Aug. 2022.

[78] C. Ieracitano, N. Mammone, A. Hussain, and F. C.
Morabito, “A novel explainable machine learning ap-
proach for EEG-based brain-computer interface sys-
tems,” Neural Comput. Appl., vol. 34, no. 14, pp.
11 347–11 360, Jul. 2022.

[79] D. Lubo-Robles, D. Devegowda, V. Jayaram, H. Bedle,
K. J. Marfurt, and M. J. Pranter, “Quantifying the
sensitivity of seismic facies classification to seismic
attribute selection: An explainable machine-learning
study,” Interpretation, vol. 10, no. 3, pp. SE41–SE69,
Aug. 2022.

[80] S. Phul, G. Kuenze, C. G. Vanoye, C. R. Sanders, A. L.
George, Jr, and J. Meiler, “Predicting the functional im-
pact of KCNQ1 variants with artificial neural networks,”
PLoS Comput. Biol., vol. 18, no. 4, p. e1010038, Apr.
2022.
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