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FORWARD LOGIC EVALUATION:
DEVELOPING A COMPILER FROM A
PARTIALLY EVALUATED META INTERPRETER

Knut Hinkelmann

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz (DFKI)
Postfach 2080
6750 Kaiserslautern
email: hinkelma@dfki.uni-kl.de

Abstract

Pure horn logic does not prescribe any inference strategy. Clauses could be
applied in forward and backward direction. This paper presents a translation of
rules into forward clauses which simulate a forward chaining deduction if
executed by Prolog’s resolution procedure. Premises of forward rules are
verified by Prolog’s backward proof procedure using the original clauses. Thus,
without any changes to the Prolog interpreter integrated bidirectional reasoning
of horn rules is possible. The translation is obtained from a meta interpreter for
forward reasoning written in horn logic. Data-driven partial evaluation of this
meta interpreter wrt the original horn clauses results in a forward program.
The approach is applied to the problem of recognizing production-specific
features from a product model. A product model contains geometrical,
topological, and technological information collected during the design phase. From
these data features giving valuable hints about manufacturing are derived.

Keywords: logic programming, Prolog, bottom-up reasoning, forward chaining,
partial evaluation, meta reasoning, production planning
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: 3 Introduction

Horn logic is a declarative knowledge representation formalism for logic programming
systems. Horn logic is based on horn clauses - clauses with at most one positive literal. In
principle there are two reasoning directions for horn clauses. Top-down reasoning starts with
a query applying the clauses in backward direction until a fact is reached for a goal. The
result of backward reasoning is a substitution for the variables of the query. Top-down
reasoning can be implemented rather efficient: for Prolog’s SLD-resolution [L1087] the Warren
Abstract Machine (WAM, [War83]) is an often implemented architecture. Bottom-up
strategies start with the facts and apply the rules! in forward direction. Naive and semi-
naive evaluation strategies [Ban86a], [Ban88] reason forward until a fixpoint is reached
making all the knowledge explicit as facts. Bidirectional reasoning can be achieved by
explicit choice of the reasoning direction or by dynamic choice (cp. LDL [Naq89], [Tre87]).

Although horn logic itself does not prescribe any inference strategy, a kind of top-down
reasoning is mostly used in logic programming, e.g. in Prolog. Several attempts have been
made to integrate forward chaining into Prolog. Common to most of these approaches is that
they use disjoint sets of rules for both reasoning directions ([Mor81], [Cha87], [Fin89]). In this
paper an approach is presented to explicitly perform, besides the usual backward chaining,
forward reasoning over the same set of horn clauses. The original horn rules are translated
into special forward clauses. The translation is obtained from a meta interpreter for forward
reasoning by partial evaluation. Applying Prolog’s backward resolution to these clauses
simulates forward reasoning of the original rules. A rule is applied in forward direction if one
of its premises is unifiable with one of the initial facts. The remaining premises are verified
by Prolog’s SLD-resolution. The conclusion is asserted and can trigger further forward rules.

The next section will give a short introduction into the intended application of the system:
production planning. The representation of the product model and the feature specification in
horn logic will be presented. In Section 3 a forward reasoning meta interpreter is described
and applied to feature recognition (Section 3.2). Partial evaluation of this meta interpreter is
demonstrated in Section 4. In Section 5 a vertical compilation developed from this partially
evaluated interpreter is explained.

2 Production-specific Features

The aim of our application is to generate a working plan for a given workpiece on a lathe
turning machine. Production planning starts with a product model containing a geometrical
model, topological information, tolerances, technological data etc. These data are
originating from the concept and design phase missing the information how the workpiece

IWe will speak of horn rules if we mean horn clauses which could to be applied also in
forward direction.



should be manufactured. On the other hand significant features, which can be derived from
the product model, give valuable hints on how the workpiece should be produced. For
instance, narrow grooves like the ones in the example workpiece (Fig. 2) are manufactured
with a piercing tool. A first step in production planning is the recognition of those production-
specific features giving indication on manufacturing.

21  Surface Representation of Workpieces

In the ARC-TEC project (Acquisition, Representation and Compilation of TEChnical
knowledge) a symbolic product model representation has been developed [Ber90]. Since the
emphasize will be on the forward evaluation strategy, only a simplified geometrical model
will be considered in the rest of this paper. The geometrical representation is based on a
surface boundary representation. There are a number of primitive surfaces by which a whole
workpiece can be described. In Figure 1 only those surfaces are presented that are relevant to
model our example workpiece shown in Figure 2. A coordinate system is given with z-axis

being the rotation axis of the workpiece.

X r2
r
r e z
21 z2 21 22
Rotation Symmetric Rotation Symmetric Envelope
Cylinder Jacket cyl of a Truncated Cone tcone

Rotation Symmetric Rotation Symmetric
Circular Surface circ Ring ring

Figure 1: Surfaces



Since we use horn logic as representation formalism surfaces are represented as facts. The
predicate specifies the type of the surface. Each primitive surface is characterized by a
definite identifier and a number of parameters. For a cylinder jacket the parameters are: two
co-ordinates denoting the bounds of its axis (Leftcoord and Rightcoord), its radius Rad
and a parameter Mdir indicating whether the cylinder is filled (a “normal” cylinder,
indicated by -) or whether it is hollow (e.g. a drill-hole, indicated by a +):

cyl (14, Leftcoord,Rightcoord,Rad,Mdir)

A cylinder is a special truncated cone with equal radius at both sides. Therefore for a

truncated cone a second radius parameter is needed:

tcone (Id,Leftcoord,Rightcoord,RadL,RadR,Mdir)
A circular surface has length zero; it has only one co-ordinate:
circ(1d,Refpoint,Rad,Mdir)

A ring is a circular disk with another smaller disk subtracted from it and both disks are

colinear. It has two radii, one for the inner (Radi) and one for the outer circle (Rado):

ring(Id,Coord,Rado,Radi,Mdir)

Now we can present the representation of our example workpiece (Fig. 3). The identifiers are

numbered starting from s1 for the leftmost circle to s17 for the rightmost circle.

AH TH

L1/

side view front view from left

Figure 2: Example workpiece

circ(sl,0,100,+). ring(s10,137,180,162,-) .
cyl(s2,0,54,100,-). cyl (s11,137,160,162,=).
ring(s3,54,179,100,+). ring(sl12,160,180,162,+).
tcone(s4,54,55,179,180,-). cyl(s13,160,189,180,-).
cyl(s5,55,84,180,-). tcone(sl14,189,190,180,179,-).
ring(s6,84,180,162,-). ring(s15,190,179,100,-).
cyl(s7,84,107,162,<) . cyl(sl6,190,240,100,-).
ring(s8,107,180,162,+). circ(sl7,240,100,-).
cyl(s9,107,137,180,-).

Figure 3: Facts representing the example workpiece



2.2  Specification of Production-specific Features

The number of possible features can be very large. Each feature covers one or more surfaces. In
Figure 4 three significant features for lathe-tooling are shown together with a tool by which
they could be manufactured. Their horn clause definitions are presented in Figure 5.

A shoulder consists of two surfaces: a cylinder neighboring a ring. Neighborhood is specified
by equal co-ordinates. The radius of the cylinder and the inner radius of the ring must be
equal. We distinguish a left shoulder (the ascending ring is to the left of the cylinder) and a
right shoulder (the ring is to the right). The depth of a shoulder is equal to the difference
between the ring’s outer and inner radii. Another significant feature is a groove consisting of
three components: a cylinder with ascending rings at both sides (Figure 4). Its width is equal
to the length of the cylinder.

For feature recognition a data-driven bottom-up strategy is preferable to a goal-directed one.
Instead of enumerating all the possible features and testing whether they can be found in a
product model, one starts with (a subset of) the facts describing the product model to identify
occuring features. This problem-solving method can be specified explicitly as a forward
reasoning meta interpreter which is written in the same language as the domain model: horn
logic.

left shoulder right shoulder groove

Figure 4: Production specific features

lshoulder(s(Rng,C)) :- ring(Rng,z, ,Radi,-),
cyl(C,2, ,Radi,-).

rshoulder (s (Rng,C)) :- ring(Rng,2, ,Radi,+),
cyl(C,_ ,2,Radi,-).

groove (g (Rngl,C,Rng2)) :- lshoulder(s(Rngl,C)),

rshoulder (s (Rng2,C)) .

depth (s (Rng,C),D) :- lshoulder(s(Rng,C)),
ring (Rng,_,Rado,Radi,_ ),
D is Rado - Radi.

Figure 5: Feature Definitions



3 Forward Reasoning Horn Rules

The specification of production-specific features in horn logic as presented in Figure 5 does not
give any demands on their evaluation. Reasoning can be performed using two principal
directions. While forward inference proceeds from the facts in the knowledge base reasoning
bottom-up to derive new facts, backward inference applies the rules in a top-down fashion
starting with a query. Prolog - like most logic programming systems - evaluates clauses top-
down (SLD-resolution, [L1087]). To extract features using this strategy an iteration over all
possible features is necessary. There must be a literal enumerating all the features and a
second literal testing whether this feature occurs in the examined workpiece.

Interpreting horn clauses in the natural forward implication direction leads to the view of a
logic program as a declarative rule system. A conclusion is a fact which is true if all the
premises are satisfied. If bottom-up evaluation would be applied to the whole database
many needless facts would be derived. That is why in the approach presented here forward
reasoning is restricted deriving just the implications of a specified set of knowledge items. In
particular forward chaining starts with a set of initial facts p;(xy,...,.xn1),....pm(X1,....Xnm)-

Only consequences of these facts are computed by the following procedure:

1. Start with a set of initial facts F= {p;(x1,....xn1), ....0m(X1,-...X0nm)}
2; Select one fact p(xy,...,xn) € ¥ to be the actual fact F. Stop if there are no (more)
facts.

3. Find the next potentially applicable rule: a rule C:- P;,...Pk is triggered, if any P;,

1<i <k, is unifiable with the actual fact F with substitution o.
If no rule is applicable go to 2. A

4.  Test the rule’s premises. The conjunction of the remaining premises Pj,...,P;_,
Pj,1,...,Pk is verified by backward reasoning giving a substitution 1 > c.

If the premises are not satisfiable go to 3.

5.  Apply the rule: Record the instantiated conclusion Ct as a derived fact in the set
of facts F.

Proceed with 2. 0
The forward reasoning strategy depends on the order in which the actual fact is selected from
the list of initial and derived facts in step 2. At least two strategies are possible:

- breadth first: The actual fact F is kept until there is no further rule for it. Then F
is set to the oldest not already expanded fact.

- depth first: F is set to the most recently derived fact Ct for which there are any
rules to be applied.



3.1 A Forward Reasoning Meta Interpreter

To achieve forward reasoning of logic progams there are in general two approaches:
. a special forward reasoning interpreter

o a meta-interpreter written in the logic programming system itself

For deductive databases many effort has been involved in developing bottom-up reasoning
strategies like naive or semi-naive evaluation [Ban86a], [Ban88]. Improvements of these
approaches like Magic Sets [Ban86b] or Alexander Method [Roh86] are just applicable for
goal-directed reasoning. A seperate forward-interpreter besides a conventional logic
programming system for top-down evaluation, however, would make the system more
complex. It requires an interface to the normal logic programming system.

A meta-interpreter on the other hand is rather inefficient, because it interprets the original
program as data. But it can be made more efficient by program transformation techniques like
partial evaluation (cp. [Har87]). This approach will be presented here. The meta interpreter
(see Figure 6) can be divided into two parts:

(1) Selecting a fact which should serve as a trigger (step 6 of the above procedure)

(2)  Finding and executing a rule (steps 3 to 5 above)

For selecting a fact a depth-first enumeration and breadth-first enumeration strategies are
presented. Asking the query ?- df-enum(p (X, Y) ,Result) will successively bind Result
to all the consequences of any instantiation of p (X, Y) .

Calling the predicate forward finds and executes one horn rule in forward direction. Its
arguments are the actual fact (bound when called) and the conclusion of the applied rule (a
free variable): a goal ?-forward (Fact,Conclusion) succeeds, if Conclusion is a one-
step derivation of Fact. The built-in predicate clause selects one rule at a time. The goal
trigger (Body,Fact, ToProve) succeeds, if one premise in Body is unifiable with the
actual fact. Then the variable ToProve is instantiated with the list of the remaining
premises, which have to be proved. These premises are verified by provelist just making a
call on them, i.e. they are satisfied by Prolog’s SLD-resolution. If all the premises are
satisfied, the conclusion of the rule is asserted.

To avoid loops, the conclusion is accepted only if it is not subsumed by any previously derived
fact. This test is performed by the predicate not_reached, which is not listed here. The
principle of the subsumption test, however, is very simple: a term p(x1,...,x,) subsumes a term
P(Y1,....yn) if the ground term p(xy,...,x,)o - instantiated with new constants - is unifiable
with p(y1,... yn). (see [Hin91]). If the conclusion is not subsumed by any previously derived
fact, it is asserted as reached and open_node. A reached node is an open node, if it is not
already selected as a trigger for breadth-first reasoning.



$ Applying one rule in forward direction:

forward (Fact,Head) :- clause (Head,Body),
trigger (Body, Fact, ToProve),
provelist (ToProve),
retain (Head) .

trigger ([Fact|Rest],Fact,Rest) :- not_builtin p(Fact).
trigger ([First|Rest],Fact, [First|ProveRest]) :-
trigger (Rest,Fact,ProveRest) .

provelist ([]).
provelist ([First|Rest]) :- First,
provelist (Rest) .

retain(Conclusion) :- not_reached(Conclusion),
asserta (reached (Conclusion)),
assertz (open_node (Conclusion)) .

% Depth-first reasoning strategy:
df_enum(Fact,Inference) :- fc_initialize,

Fact,

df one(Fact,Inference) .

df one (Fact,Inference) :- forward (Fact, Conclusion),
df one more (Conclusion, Inference) .

df one_more (Conclusion,Conclusion).
df one _more (Conclusion,Next) :- df_one(Conclusion,Next).

% Breadth-first reasoning strategy:

bf enum(Fact,Inference) :- fc_initialize,
Fact,
forward (Fact, Inference) .
bf enum(Fact,Inference) :- forward one(Inference).
forward one (Inference) :- open_node (Fact),

retract (open_node (Fact)),
forward(Fact, Inference) .

fc_initialize :- abolish(open_node,1),
abolish(reached,1).

Figure 6: A forward reasoning meta interpreter

3.2 Forward Reasoning Feature Recognition

Now we come back to our application of feature recognition. The set of initial facts for feature
recognition is the representation of a workpiece’s product model. Then using the above
described strategy forward reasoning seems to be an adequat strategy to recognize features.
We will exemplify it with the rules of Figure 5. Starting with the facts describing the
workpiece (Fig. 3) only the features occuring in the workpiece should be derived. Here is a
procedure which will serve this purpose. The predicate feature has two arguments:



Surfaces is a list of surface representations our workpiece consists of (the initial facts).
During execution the second argument F will be bound to a feature occurring in this workpiece:

features ([Surface|_],F) :- df-enum(Surface,F).

features ([_|Surfacelist],F) :- feature(Surfacelist, F).

The query ?- features([ring(sé6,84,180,162,-)]1,F) will successively bind F to

F = lshoulder(s(s6,s7));
F = groove(g(s6,s7,s8));
F = depth(s(s6,s7),18);
no

4 Partially Evaluating the Meta Interpreter

Partial evaluation is a program transformation technique which, given a normal program P
and a goal G, produces from P and G a specialized program P’ which will evaluate G more
efficiently. To increase efficiency of our meta interpreter we partially evaluate the
interpreter clause forward wrt to a logic program. The result of this partially evaluated
meta interpreter is a set of forward rules which, when evaluated by a top-down reasoning
system, simulate the forward application of the original horn clauses.

The predicate forward has the actual fact as parameter, which is bound when forward is
called. But it is not known in advance and thus does not help for partial evaluation. A second
input to the forward clause is the hole logic progam itself, since the predicate clause is
called with two unbound variables. So our partial evaluation procedure specializes forward
wrt the whole program. This approach is called data-driven in [Cos91]. There are various
rules for partial evaluation like unfolding, folding, goal replacement, and new definition
[Tam84], [Gal90], but here only unfolding is needed:

Definition: Let P be a normal program. Let C be a clause in P of the form
A :- By,...,Bj,....By. Let Hj - Q17,....Q1%

Hm o7 le/szk
be clauses in P with heads unifiable with B; yielding unifiers 61,...,.0m. The result of
unfolding C on B; is the set of clauses

{(A - B1,...,Bi-1,.Q11,--Q1k/Bis1,....Bn)o1 ,

(A :- B1,....Bic1,.Qmi/+sQumikiBisTsos::Bn)CGm}

P is transformed to P’ by replacing C by these clauses. O



Now we will explain the partial evaluation of the meta interpreter (Figure 6) wrt a program
of only two clauses:

lshoulder (s (Rng,C)) :- ring(Rng,Left, ,Rad,-),
cyl(C,Left, ,Rad,-).
depth (s (Rng,C),D) :- lshoulder(s(Rng,C)),

ring(Rng, ,Ro,Ri, ),
D is Ro - Ri.

First we unfold the forward clause on its first premise clause (Head, Body) . Since clause
is a built-in predicate its definition is not given as a set of horn clauses. To be consistent with
the definition of unfolding imagine that the object program is specified by a set of facts with
predicate clause:

clause (lshoulder (s (Rng,C)), [ring(Rng,Left, ,Rad,-),
cyl(C,Left, ,Rad,-)1]).
clause (depth (s (Rng,C),D), [lshoulder(s(Rng,C)),
ring(Rng, ,Ro,Ri, ),
D is Ro - Ri]).

The result of the first transformation step are two new clauses. Since clause is defined by
facts, the premise clause (Head, Body) is eliminated and the variables Head and Body are
instantiated:

forward (Fact,lshoulder (s (Rng,C))) :-
trigger([ring(Rng,Left,_,Rad,-),cyl(C,Left,_,Rad,—)],
Fact,
ToProve),
provelist (ToProve),
retain (lshoulder (s (Rng,C))).

forward (Fact,depth (s (Rng,C),D)) :-
trigger([lshoulder(s(Rng,C)),ring(Rng,_,Ro,Ri,_),D is Ro - Ri],
Fact,
ToProve),
provelist (ToProve),
retain (depth (s (Rng,C),D)).

By unfolding each of these rules on trigger, for each premise of the original object rule a
new forward clause is generated. The variable Fact is bound to this premise. The variable
ToProve is bound to the list of the remaining premises, respectively. Since trigger is a
recursive rule unfolding will also be applied recursively. It should be noticed, however, that
Prolog built-ins and negated premises cannot serve as a trigger during forward reasoning,
which is tested by the premise not_builtin_p (Fact). Therefore no extra forward clause is
generated for them:

forward(ring (Rng, Left, ,Rad,-),lshoulder(s(Rng,C))) :-
provelist ([cyl (C,Left, ,Rad,-)]),
retain (lshoulder (s (Rng,C))).

forward(cyl (C, Left, ,Rad,-),lshoulder(s(Rng,C))) :-
provelist ([ring (Rng, Left, ,Rad,-)1]),
retain (lshoulder (s (Rng,C))).

forward(lshoulder (s (Rng,C)),depth(s(Rng,C),D)) :-
provelist (ring(Rng, ,Ro,Ri, ), D is Ro - Ri]),
retain (depth (s (Rng,C),D)).

forward(ring(Rng,_,Ro,Ri, ),depth(s(Rng,C),D)) :-
provelist (1shoulder(s(Rng,C)), D is Ro - Ri]),
retain (depth (s (Rng,C),D)).



As a last transformation step each clause is unfolded on the call of provelist. The result of
our partial evaluation wrt to the above rules are four clauses:

forward(ring (Rng, Left, ,Rad,-),lshoulder(s(Rng,C))) :-
cyl(C,Left,_ ,Rad,-),
retain (lshoulder (s (Rng,C))).

forward(cyl (C,Left, ,Rad,-),lshoulder(s(Rng,C))) :-
ring (Rng,Left, ,Rad,-),
retain (lshoulder (s (Rng,C))).

forward(lshoulder (s (Rng,C)),depth(s(Rng,C),D)) :-
ring(Rng, ,Ro,Ri, });
D is Ro - Ri,
retain (depth (s (Rng,C),D)).
forward(ring(Rng,_ ,Ro,Ri,_),depth(s(Rng,C),D)) :-
lshoulder (s (Rng,C)),
D is Ro - Ri,
retain (depth(s(Rng,C),D)).
Thus, from the original horn rules a set of forward clauses have been computed. The meta
program of Figure 6 has been turned to an object program, because the meta predicates
clause, trigger and provelist are eliminated and the forward clauses are called

directly.

By this partial evaluation procedure every rule ¢(...) :- p1(...),....pu(...). is translated into a

sequence of forward rules following this pattern:
forward(p1(..),9(...)) - p2(...),....pn(...), retain(q(...)).
forward(pz(...),q(...) - p1(...),p3(...),....pn(...), retain(q(...)).

forward(py(...),9(...) - p1(..),p2(..),....pn-1(...), retain(g(...)).

These clauses together with the original clauses form the new bidirectional program. Because
forward evaluation of a horn rule can be triggered by a fact unifying any premise of the rule,
for every premise pj(...),...,pn(...) of the original rule a forward clause is generated. This is an
important distinction to Yamamoto and Tanaka’s translation for production rules [Yam86],
where only goal-directed forward reasoning is supported, and a rule’s premises are verified
only by comparing them to the fact base instead of calling SLD resolution.

5 Vertical Compilation into WAM Code

The Warren Abstract Machine [War83] is an often implemented architecture for backward
reasoning of horn clauses. After horizontal transformation of a horn clause program P into a
forward clause program P’ (either by direct transformation or by partially evaluating the
meta interpreter, cf. Section 4) the clauses of P and P’ - together with the reasoning strategies
M’ of the meta interpreter - are compiled vertically into WAM code (see Fig. 7). But since the
WAM was developed especially for backward reasoning, several improvements for forward
rules are possible. They extend the WAM by a special stack area for derived facts, called
retain stack, and a one-way unification for subsumption tests. In the following Subsections

10



names of operations, stacks, and registers are taken from [Gab85]. The tags REF(erence),
STR(ucture), and LIS(t) are borrowed from [Ait90].

horizontal )
transformation

vertical
compilation

vertical
compilation

Figure 7: Two phase compilation for forward evaluation of horn clauses

5.1 The Retain Stack

Derived facts in horizontally compiled forward rules are retained by assertion with
predicate reached/1 (see Fig. 6). Such assertions are rather inefficient because program
code itself is altered dynamically. Information about derived facts can be held more
compactly at machine level in a special data area which will be called the retain stack
RETAIN (see Fig. 8). The stack is organized as a list: The first REF cell points to the current
entry and the following LIS cell points to the beginning of the next item. Every entry on the
stack is an internal representation of a proposition derived by forward rule application. It
consists of variable, constant, list and structure cells distinguished by tags. An example is

given in Figure 8.

The pointer RTOP indicates the top of the retain stack. All entries of the retain stack are
reached nodes. For the breadth-first strategy of forward reasoning the nodes are selected as
actual fact for rule triggering in the order in which they are generated. This order is identical
to the order of the nodes on the retain stack.

Therefore additional information for breadth-first forward evaluation has to be held to
manage the retain stack: open nodes are derived facts, which have not already been selected
as actual facts for forward chaining. Open nodes are accessed by the register ON. Every node
with an address higher than ON is an open node. As soon as the node at address ON is
selected, ON is increased.

11
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Figure 8: Retain Stack

52  Compiling Retain

The clause for the predicate retain/1 (Fig. 6) in a forward clause is compiled into a sequence
of WAM operations pushing its argument -- the derived fact -- onto the retain stack.

retain/l: not_r subsumed X1 % Test for subsumption
push_fact_retain X1 % Copying the fact to RETAIN

To accept the new fact it must be secured that it is not subsumed by any structure already
existing on the stack. A new operation not_r_subsumed Xi is introduced performing this
test. The new fact referenced by Xi is matched against every entry on the retain stack. It
calls the function subsumes (x,y) to test subsumption. The functions unify (x,y) and
subsumes (x,y) differ only in two cases: If x and y are unbound REF cells then a new constant
‘c; iscreated and y is bound to c; . If y is an unbound REF cell and x is a non-REF cell, the test
fails, because a REF cell is not subsumed by a value. The rest of the procedure remains
unchanged. Backtracking occurs, if subsumption of the derived fact with any previously
derived fact succeeds.

If subsumption fails no backtracking occurs and the new fact is pushed onto the retain stack by
the operation push_fact_retain Xi. The values on the retain stack are “more persistent”
than values on the global stack or the local stack. While values on the local and global stack
may be destroyed by backtracking, derived facts must survive for the whole forward inference
chain. Because of this no reference from the retain stack to any other memory cell is
permitted. This is why a derived fact is copied onto RETAIN. Before pushing variables are
dereferenced. If the dereferenced value is not an unbound variable cell it is copied onto the
retain stack and dereferencing is performed recursively for every subvariable in the functor
structure. Otherwise, for an unbound variable, a new REF cell is pushed onto the retain stack
referring to itself. Finally, RTOP is increased, completing the retain operation.

12



5.3 Compiled Strategies

The clauses representing different reasoning strategies refer to structures residing on the
retain stack. So their compiled version needs some modifications compared to a
straightforward compilation. These modifications are rather obvious, but since the retain

stack is an extension to the conventional WAM, novel operations are introduced.

. Performing forward chaining initialization resets the pointers ON and RTOP to the
bottom address of the retain stack: fc_initialize

Accessing an open node is implemented by getting the structure at stack position ON,
which is performed by a call to open_node Xi. Then Xi refers to the actual open node.

. After accessing an open node ON thas to be increased to point to the successive stack

item by executing next_open_node

. Breadth-first reasoning stops, if there exists no further open node. This is equivalent to
the state when ON = RTOP

6 Future Work and Conclusions

An approach for combined forward and backward reasoning of horn rules has been presented.
The whole system is embedded in a logic programming environment. A common horn rule set is
used for both reasoning directions. By . partially evaluating the meta interpreter the original
horn clause program is transformed into clauses corresponding to one step of forward reasoning.
For these forward clauses a compilation into an extended Warren Abstract Machine (WAM
[War83]) has been developed. Instead of simply asserting derived facts, a special stack area -
called retain stack - extends the WAM. Also the subsumption test of a new fact with
previously derived ones is made more efficient by variations of the WAM’s unification
operations. Accomodation of the WAM to forward reasoning is one of our current research

activities.

The presented plain control strategy is induced by the SLD-resolution procedure of logic
programming. It is very similar to the Prolog implementation of the KORE/IE production
system [Shi88]. Forward rules are selected for execution in a strictly sequential manner. Also a
rule's premises are tested sequentially. But implementation methods for production systems
like TREAT [Mir87] or Rete [For82] algorithm are not appropriate, since premises are proved
by backward reasoning in our approach. Nevertheless, besides breadth-first and depth-first
strategies, more sophisticated control strategies are conceivable, especially in larger
applications, where rules reflect an expert’s heuristics. In the presented approach the
strategies are themselves are represented as horn clauses, so they can be adapted for the
specific application. This flexibility does not cost too much overhead, since by partial
evalution of the meta interpreter the border between object and meta level has been blurred.
The access to the object level by a call of the clause predicate is abandoned from the meta
interpreter. To represent meta information [Pet88] promotes to control rule firing at instance
level taking into account variable instantiations. Looking for the appropriate level of rule

13



firing control and its integration into the meta interpreter is one matter of future research. It

will be influenced strongly by our application of production planning.
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