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A Sophisticated Expert System for the Diagnosis
of a CNC Machining Center

By K. Althoff, K. Nékel, R. Rehbold, and M. M, Richter!

Abstract: As the domains of diagnostic expert systems become larger and more compiex, purely
associative approaches are no longer adequate solutions. A good example for such a situation is the
diagnosis of a CNC machining center where the diagnostic process has a rich inner structure that
has to be reflected in the system. In this article we deseribe three ways of exiending the conven-
tional expert system architecture. Firstly, our system uses a structural mode] of the machining cen-
ter in addition to production rules. Secondly, we pay special attention to knowledge acquisition
which is intimately related to the learning process. Finally, several temporal aspects of the diag-
nostic situation are addressed explicitly.

Zusammenfossung: Im gleichen Mafle, wie diagnostische Expertensysteme in immer umfangreichere
und komplexere Aufgabenstellungen vordringen, zeigt sich, daf ausschlieblich regelbasierte, asso-
ziative Ansitze keine angemessene Lésung mehr darstellen, Ein typisches Beispiel fiir eine soiche
Situation ist die Diagnose von CNC-Bearbeitungszentren, deren komplexe innere Struktur und die
spezifische Vorgehensweise des Experten explizit in der Wissensbasis reprisentiert werden miissen.
In diesem Artikel beschreiben wir drei Richtungen, in denen die “konventionelle” Expertensystem-
architektur erweitert werden kann, um den gestiegenen Anforderungen zu entsprechen. lnser
System stiitzt sich auf ein Struktur- und Funktionsmodell des Bearbeitungszentrums, das das in
_ Regelform gespeicherte Wissen erginzt. Die Verwendung des Modells stellt neuartige Anforderun-
gen an die Wissensakquisition, die durch eine enge Verzahnung mit dem Lernmechanismus des
Expertensystems unterstiitzt wird. Schlieflich gehen wir auf die zeitlichen Aspekte der Diagnosesi-
tuation ein, die eine spezielle Behandlung der dynamischen Maschinenprozesse und der sich darin
entwickelnden Fehler erfordern.
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1 Introduction

Most of the existing expert systems deal with diagnostic problems. In principle to
establish a diagnosis requires a kind of selection process, namely to isolate the correct
diagnosis from other possible hypotheses. This seems to be easier than e.g. to construct
a plan, where a completely new object has to be created. Indeed many diagnostic situa-
tions are of a structurally simple nature. This is particularly true if the relation be-
tween the observed data and the possible reasons for the outcomes of these data can
be modeiled in the form of production rules. This means that one is investigating a
fixed static situation described by facts and rules; in more difficult situations object
oriented approaches have been used.

For really demanding diagnostic problems such a static approach is clearly insuf-
ficient. Already a superficial view on people who perform the task of finding the
reasons for malfunctioning of complex machine aggregates shows that they have to
deal with a process of a rich inner structure. An adequate model can no longer consist
merely of the data and possible causes for these data. The topic of such a madel has
to be the whole discourse of finding the diagnosis, i.e. the description of a certain
mental process. This process incorporates a number of different activities which are
based on and connected with various types of knowledge. Even in the case of the
diagnosis of well-defined technical devices this knowledge is to a great extent in-
complete, vague and of a heuristic nature. This is a simple consequence of the fact that
we are no longer dealing with the machine alone but with the diagnostic process.

In this paper we will concentrate on three different aspects which our model has
to reflect, The example which has led us to these investigations is the diagnosis of a
CNC machining center. This is the subject of a project in the “Sonderforschungsbe-
reich Kinstliche Intelligenz™ at the University of Kaiserslautern (West Germany) in
cooperation with the WZL at the Technical University of Aachen. Tt will, however,
not be explained here at all because for our present purposes it suffices to answer the
questions under consideration in an abstract way.

Firstly our system is model-based. Therefore we have a model (on various degrees
of abstractions)} of the machine and all questions concerning the machine are solved
with respect to that model. The second part is addressed to knowledge acquisition
which is strongly connected with the process of problem-solving and the structuring of
the knowledge and to some extent cannot be disconnected from learning. Finally we
discuss why the diagnostic process is an activity in which time plays an important role.
We argue that the structuring of temporal aspects goes far beyond what has been
modelled in the various “temporal logics”.
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2 A Model-Based Approach to Diagnosis

2.1 Why Model-Based Diagnosis?

Up to now most expert systems for diagnosis had little knowledge about the structure
and functionality of the object they worked on. Instead, they used several “(pattern)
- {finding)” rules, sometimes enhanced by intermediate diagnoses. These *shallow”
rules represented parts of the compiled knowledge of some experts in the field, who
themnselves gathered it through experience and their understanding of the way the
machine works.

[Chandrasekaran, Mittal83] point out that knowledge of the underlying structure
(“*deep” knowledge, also called a model) is not needed, if the compiled knowledge
represents all the relevant pieces of that model. The problem in this thesis is of course
that the transition from a model to shallow rules is by no means a simple one, since
this is an important part of the procedure that makes somebody an expert! As long as
there are no satisfying methods to get all relevant information out of the structure
(and there is no reason to hope this will change soon) a combined methodology is
needed: shallow rules from the expert for speed and deep models, maybe from experts,
maybe from plans, for details, unusual cases etc. This approach to diagnosis corre-
sponds to the way human experts attack faults: usually, they quickly find the faulty
part using their compiled knowledge; but sometimes things happen that they had not
thought of before and they have to use their knowledge about the structure of the
machine to continue. Another aspect of human expert reasoning is the ability to select
a suitable focus, i.e. the right level of abstraction.

Several approaches to model-based diagnosis have been explored, nearly all of
them work on faults in electric digital circuits [Davis85, Genesereth85]. Expert systems
for fault diagnosis in mechanical engineering however usually only use shallow know-
ledge (e.g. rules) without deeper understanding of the machine. There are several
reasons why digital circuits are much easier to model than arbitrary machines:

— only one type of connection between components is needed: wires

—~ like programs in computers, circuits are digital, while machines seem to work
more analogically

— in fault diagnosis for circuits there is little or no need for states of components (at
least in the examples given in the literature)

— faults in circuits can be found by looking at them statically, while machine faults
usually require a dynamic view

—  time relations play a much more important role even in simple machines than they
do in circuits
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_  circuits usually follow a global clock signal, while machine components change
their states only due to local influence (asynchrenous parallelism}.

We will now discuss a possible solution to some of the aforementioned difficulties.

2.2 Concepis of the System

Our goal is to create a toolbox system that aliows the user to model a machine for
diagnosis: not only its structure but also the user’s expertise {compiled knowledge),
¢.g. fault probabilities, simplifying relations. Modelling goes on in three steps:

1. Build up the assernbly structure
2. Connect components that functionally betong together
3.  Attach additional information (i.e. expertise)

First we need a way to represent the structure: Using a set of given primitive compo-
nents and several connections we want to build up more complex assembly groups.
These assembly groups then can become parts of a still more complex assembly group
and so on, until we reach the model of the whole object (machine) to be diagnosed.
Subsequently we will only use the word component to describe such a machine part,
no matter whether it is a complex or a primitive one.

Independently from this structure oriented view we also want 10 model systems,
i.e. groups of components that serve the same purpose (e.g. cooling system, power
supply etc.) but are not locally connected. This is a way of thinking human experts
use, too, when reasoning about faulty devices.

2.2.1 Component Hierarchy

For every concrete instance of a component we model a prototype component, i.e.
a class in the sense of object oriented programming. These component classes form a
component hierarchy, where all components are arranged into a tree depending on the
degree of their functional specialization and/or technical realisation. The root of this
component hierarchy is the most general component THING. In this tree, related
component classes are linked by an a-kind-of-edge, not an fs-a-edge.

Fach component class contains information about its interfaces to the outside
(called ports), its state and behavior (expressed in constraints between the ports), its
composition, i.e. its subparts and internal connections (if it is not a primitive compo-
nent) and some rules to diagnose typical faults in that part.
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2.2.2 Structure Hierarchy

While the component hierarchy contains abstract components ordered by specificity,
the structure hierarchy describes the concrete component and its sub-components.
Using the description of the compesition from the component hierarchy the internal
structure of a component can be built up. Several instances of the same component
class can be part of a structure hierarchy, if that subpart is used more than once, e.g.
pistons in an engine. The concrete subparts (instances) are connected by is-part-of-
edges to their concrete superpart. Now it is possible to expand the thus created sub-
parts themselves into their parts, again using the information provided in the compo-
nent hierarchy. [t is easy to see that the structure hierarchy is a tree, too. Its nodes are
instances of corresponding component classes, to which they are connected in an f5-¢-
relation. Only components that unambiguously belong to the structure of a compo-
nent are considered as subparts, i.e. the structure hierarchy models the physical part-
of-relation.

Example:

CNC machining
center

P Xy 22 IR

clomping
device

Fra Fran £ Xy

Fig. 1. Part of the structure hierarchy of the CNC machining center

change aim grip magazine

2.2.3 Functionality

Beside the dependencies denoted by the is-part-of-relations there are a lot of other
relations (connections) between components. These functional dependencies are added
1o the structure hierarchy as connected-to-relations. Information about the connec-
tions between subparts can again be found in the component class. By adding con-
nected-to-edges to the structure hierarchy its tree character is lost; so we call it the
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functional dependency net. Note that connected-to-edges can cause ¢yclic dependen-
cies.

Different from e.g. electrical circuits connected-to-edges in mechanical engineer-
ing models can have several quite different interpretations (types), e.g. the flow of in-
formation, heat, electricity, material (liquid, gas}, force etc. Different kinds of con-
nected-fo-edges of course can also model different intensities of connection.

2.2.4 Component Information

As mentioned above each component class contains several information about its
component:

Interfaces {ports)

A component interfaces its neighbors by several types of input and output ports.
These ports are its only connection to other components. Each port is connected to
another port of the same type via a corresponding connected-ro-edge.

Behavior and state

Qutside of a component its behavior is described by the relations between its ports.
This functionality is internally given by constraints between the ports. While these
constraints only represent a static view of the component, changes in time also have to
be modelled, e.g. using some measures of change. The behavior of a component is
closely related to its state. State and behavior are abstracted and efficient versions of
the relations that can be achieved using the composition of the component and the be-
havior of its subparts.

Compuosition

Each component class contains information about its subparts, the connections be-
tween these parts and the connections between some subparts and the ports of the
component.

Primitive components need no compeosition information. A clever selection which
parts to model as primitive is important to keep the cost of modeiling low and effi-
ciency high. For exampie it seems to be reasonable to model a component as a primi-
tive if it is always completely replaced if faulty.
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Ports of subparts are interlinked by connected-to-edges of appropriate types or
connected to ports of the component itself via translation relations. Connected-to-edges
between subparts represent the inner functionality of a part, while translation relations
impart that behavior to the outside. Naturally, the behavior described through the
functionality of the subparts and their connections should be the behavior directly
described for the component.

Translation relations make similar port types of different abstraction levels com-
patible and can therefore link several ports of subparts to one port of the component.

[Davis85] describes a modelling system for electrical circuits, which allows param-
eterized components, i.e. meta-components that can be used to build several real com-
ponents according to some parameter, e.g. an #-bit-adder can be instantiated to any
adder for n € N. Even though this parameterization is not as helpful in mechanical ap-
plications as it is in electric ones it can help to keep the cost of modelling low.

Diagnostic module

For every component there is a diagnostic module tailored to the special faults of that
part. While there is in principle no restriction on the methods to use for diagnosis we
selected the usual production rules to gain profit from the research efforts that went
into that direction. Several methods can be used to find faults in a component:

Rule-based examinations and conclusions as in usual diagnostic expert systems
(here expertise is incorporated)

— Descent in the structure hierarchy for better localization of some fault, if not
already in a primitive component

—  Fault simulation by “constraint suspension™ [Davis85], i.e. checking out which
subparts may have caused the fault by removing selected constraints from the
functional dependency net,

— Use of the connections in the system the part belongs to, i.e. only regarding se-
lected neighbors of the same system.

Each of these methods can use its own special focus, i.e. several subparts can be ex-
panded to different levels to provide an aptimal examination.

Whether it is sufficient to restrict our model tool to qualitative values is under inves-
tigation; sometimes it might be important to reason with quantities. Up to now temporal
relations between state intervals and machine pararneters are not well covered. The use of
(static) qualitative measures of change (e.g. constant, ascending, descending) is insuf-
ficient to envision the behavior of a machine. Here aspects of simulation play an
important role. So modelling with time is an essential field of research,



258 K. Althoff et al.

3 How to Get the Knowledge into the System

In this chapter we give a short description of the main problems we are dealing with
while acquiring the necessary knowledge for our diagnostic situation. These problems
can be formulated by the following questions which we will try to answer.

1. What kinds of knowledge are relevant for this diagnostic problem?

2. Which knowledge holders own this knowledge and in what kind of way can they
be used as knowledge sources?

3. What are the structural consequences for representing this knowledge and model-
ling the diagnostic problem-solving process?

3.1 Kinds of Knowledge Needed for the Diagnosis
of a CNC Machining Center

In our context of diagnostic problem-solving, as in many others, knowledge has to be
described on at least three different levels:

1. the cognitive level,
2. the representation level,
3. the implementation level.

The first level serves for identifying the knowledge structures, which are important to
find the diagnosis. The second level is used to construct a representation of this know-
ledge, which focuses on the main aspects of its structures and should be as natural as
possible. The third level reflects the pragmatic necessity of efficiently using this know-
ledge representation.

These levels can be used to differentiate the areas in which knowledge appears, yet
there exist other categories for classifying the considered knowledge.

1. Explicit Versus Implicit Knowledge (on the Representation Level)

Knowledge which is directly available without transformation is explicit knowledge.
When needed during the problem-solving process implicit knowledge can be generated
by the system based on explicit knowledge.
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2. Explicit Versus Implicit Knowledge (on the Cognitive Level)

Within the field of Cognitive Science especially the concept of implicit knowledge is
used in a different sense. It denotes knowledge the respective owner is #otf conscious
of and has difficuities in making it transparent to other persons. In this sense know-
ledge which can be made transparent without problem is called explicit. There is much
evidence {cf. e.g. [Berry87]) that some kinds of knowledge are directly stored in an
impiicit form, therefore requiring conscious effort to make it accessible. Implicit
knowledge that has originally been represented explicitly is also compiled knowledge.

3, Object Knowledge Versus Meta-Knowledge

Object knowledge is knowledge about the machining center (functioning, faults and
corresponding causes, machine components, ...). Here the expert is absolutely com-
petent. Meta-knowledge is knowledge about the diagnosis discourse, i.e. knowledge
for controlling the object knowledge to govern the diagnostic procedure acquisition
and learning processes and to generate explanations. Meta-knowledge (discourse know-
ledge) is a type of knowledge where the expert may go wrong,

4, Knowledge Consisting of a Partition of the Domain into Classes
Versus Knowledge Congisting of Prototypical Examples

A prototypical example is a technical term in the field of Cognitive Science denoting
a chunk of knowiedge. Such an example describes a class of applications or things and
it must be clear what is typical in that example and what is variable. A partition of the
domain into classes is a hierarchical and more abstract way for describing knowledge,
but the expert often uses examples to explain his domain.

5. Background Versus Foreground Knowledge

Background knowledge is that part of the domain knowledge which is necessary for a
thorough understanding of the nature of the problem. Fereground knowledge is all the
knowledge that has a direct infiuence on the diagnostic procedure.

3.2 Where the Knowledge is Stored and how it Can be Made Usable for the Project

As our diagnostic situation is embedded in the field of Mechanical Engineering, back-
ground knowledge mostly consists of the relevant knowledge of the affected subfield.
There is plenty of literature available on the subjects of the principal construction and
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functioning of machine tools, numerical controls, the production processes used and
the necessary testing facilities.

The object knowledge can be extracted from the technical documentation of the
machining center, which is not available in public, of course. This includes material
about the construction of the machine, the control, the circuitry etc.

Beside the problems of acquiring all this object knowledge, the main problem for
big systems is organizing such a high amount of information and identifying the neces-
sary control knowledge. This discourse knowledge is hardly documented and exists
mainly in the form of strategies and heuristics in the mind of the service technicians of
long standing. Since these service technicians (as other experts, too) are not able to
communicate their relevant knowledge completely (because much of it is implicit),
here is the point where psychologically motivated knowledge acquisition methods
come into play. For a survey of these methods see [Diederich87] or [Olson, Rueter87].

The approach we take is that one member of our knowledge acquisition team (an
electrical engineer) takes part in a training in maintaining machining centers at “our”
machine tool company. This training provides a kind of knowledge platform upon
which a useful processing of all maintenance and repair documents of the last years
becomes possible. This results in a measure for evaluating al! the symptom-cause-at-
tachments. Such evaluations enable the realization of trouble shooting plans (a kind
of generalized flow-charts), which will be used for verification purposes during know-
ledge acquisition meetings at the machine tool company.

To get ali the detailed discourse and object knowledge into the system, one of our
aims is developing a knowledge acquisition procedure, which is adequately applicable
at these knowledge acquisition meetings. For a lot of good starting points for this see
[Preraug7]. Another aim is to develop a knowledge acquisition component, which
enables the expert/knowledge engineer to think and act in the respective context using
prototypical examples.

3.3 A System Design for Building Big Knowledge Bases

Although most knowiedge acquisition systems have chosen a relatively general starting
point for automatically classifying and structuring the domain knowledge, we want to
be rather close to the respective application. The reason for this is our favoring of the
expert’s problem-solving behavior, which can be modeled sufficiendy only if his way
of thinking serves as a detailed guideline for the diagnostic procedure. Automatical
classification and structuring tends to deviate from this guideline in the end. Since
human problem-solving can hardly be separated from learning, this is an important
part of our project. The main task here is to enable the system to draw analogous in-
ferences from known examples based on a similarity measure for them,
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QOur starting point is a small prototype which has explicitly represented domain
and control knowledge and in which the needed world of concepts is rather fixed. If
the knowledge acquisition compoenent is able to work on the representation of such
knowledge a model of the system behavior is accessible for the knowledge acquisition
process. This can be compared to the user’s specifications (in the form of prototypical
examples). Therefore it is possible to build an integrated test environment that allows
to look at, execute and/or change many different aspects of the system.

Since examnples are a very important knowledge acquisition medium, they will be
directly representable within our system. Therefore user specifications can be repre-
sented easily. Using the examples the specifications can then be transformed into a
more abstract control and knowledge structure, At present they include the following
information:

1. Start context

2. Differentiating symptoms
3. Fault causes
4

Strategy how to find the fault causes beginning with the start context by deter-
mining the differentiating symptoms

5. Evaluation of the diagnosis strategy
6. Frequency of example occurrence

To give a taste of our explicit knowledge representation we now introduce contexts
and meta-contexts as examples of basic knowledge structures;

Contexts

A context is the basic structure for modeling a concrete “part™ of the program. Ex-
amples are diagnosis contexis (like data provision, intermediate diagnosis, final diagno-
sis, ...}, machine component contexts (like tool changer, magazine, numerical control,
...), system contexts (like lnput, output, browser, debugger, dizgnosis, knowledge
acquisition, learning, explanation, ...) or example contexts (sample data). A context
includes among other things production rules for diagnosis, production rules for con-
text managing and constraints for modelling purposes.

Meta-Contexts

For every context there exists a corresponding meta-context which represents meta-
knowledge of the considered context necessary for processing the context informa-
tion. A meta-context includes e.g. meta-diagnosis rules or meta-context rules, which



262 K. Althoff et al.

define the strategy of the rule interpreter concerning processing the diagnosis or con-
text rules, respectively.

The fact that both the object knowledge and the control knowledge must be repre-
sented explicitly for using a knowledge acquisition component, which bases on the
above mentioned ideas, is not really a restriction for their applicability. The reason is
that building a big knowledge base requires a very high amount of flexibility and
system transparency on its own, which supgests an explicit knowledge representation
not only for the object knowledge, but for the discourse knowledge, toa.

4 Temporal Aspects of Diagnostic Sitnations

4.1 A Classification of Temporal Aspects

In the past diagnostic expert system projects have customarily chosen to concentrate
on the representation of the static parts of the experts’ knowiedge, e.g. knowledge
about symptoms, tests and faults. The basic assumption underlying this approach is
that after a fault has occurred all relevant symptoms are observed simultaneously and
the diagnosis is based on a static evaluation of this snapshot of the machine’s state. Al-
though this assumption is justified in many cases, critical remarks throughout the litera-
ture on diagnostic expert systems suggest that there are aspects of the diagnostic
procedure or the faults to be diagnosed which require an explicit representation of
their temporal properties, The literature on mechanical engineering (cf. e.g. [Weck85])
mentions temporal data, too, as a source of information for diagnosis. Naturally, the
Al and mechanical engineering views of temporal aspects in diagnostic situations do
not ¢oincide completely, However, this does not necessarily imply that Al researchers
work in disregard of existing knowledge; as seen from the mechanical engineer’s point
of view some of the aspects that are relevant to Al are instances of commaon sense
reasoning rather than engineering expertise.

Nevertheless there is one important aspect that is common to both perspectives.
Diagnosis is not an end in itself, but a means to the end of repairing the machine and
restoring it to its full operational capacity. Any improverent of the diagnostic proce-
dure (in particular any speed-up) serves to minimize the duration and, hence, the cost
of the standstill, In this sense diagnosis and repair are “normal” components of the
production process and are therefore subject to the same economic considerations as
all the other parameters in production planning. As a consequence the supervision of
the diagnostic process is a special case of a planning situation where the diagnosis is
pursued only as long as the utility of the additional information to be gained out-
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weights the additional effort. The principal decision criteria in this situation are the ex-
pected cost and duration of the tests, the penalty costs of the standstill and the
urgency of special activities {e.g. due to impending danger). In process monitoring and
trouble shooting the characteristics of the planning situation become even more pro-
nounced because the real-time requirements of the process can only be met by judici-
ously interleaving the diagnostic actions with the primary process,

The second aspect that is repeatedly mentioned in the literature on mechanical
engineering concerns time series of process pargmeters. In many cases faults do not
manifest themselves in the form of isolated abnormal observations, instead they
show up as significant perturbations of statistical aggregates over time (e.g. trends,
mean values etc.). Statistical aggregation is a potentially dangerous operation since it
eliminates the temporal character of the observations and thus information about the
original data is lost. In the case of long time series this may justified because statistical
significance is guaranteed by the sheer quantity of measurements; even then it may be
potentially misleading to mix aggregates and single observations in e.g. a rule embody-
ing diagnostic knowledge. But in a large number of cases termed dyramic faulf situa-
tions faults are characterized by short sequences of events and machine states rather
than long series. Consider for example the following example of a hypothetical fault
that results in parameter A’s value being below normal, then rising above normal for a
period of time and finally dropping below norrnal again.

vaiuc of [ 3
parameler A

- nofmal

error

4

lime
Fig. 2. A fictitious dynamic fault situation

In such a case no single “snapshot” of the machine’s state can be an adequate
description of the fault situation nor can such a fault be detected by any single measure.
ment. The only way to detect it is to measure parameters at several points of time and
to match the values obtained against an explicit description of the evolution of the
fauls sitnation over time. We will call such a description a Afstory and the set of mea-
surements an observation sequence. A very similar problem arises if a parameter is not
directly observable but can be deduced from multiple measurements of other param-
eters,
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Twa other aspects can be found in the literature on diagnostic systems, In reality
the sequence fault — observation — diagnosis — repair is rarely followed in its pure
form, in particular diagnosis and repair often cannot be separated in this one-way
fashion. In contrast to medical science it is a standard procedure in technica diagnosis
to replace individual parts of the machine on a (guided) trial and error basis and thus
eventually home in on the cause of the fault. Another situation which calls for an
alternation of diagnostic and repair actions occurs when the machine has been damaged
severely so that it has to be repaired provisionally before the diagnosis can be carried
out. Reflecting this procedure in an expert system poses a number of difficult logical
(non-monotonicity) and computational (frame problem) problems since some of the
earlier observations will have been invalidated by the replacement whereas others will
have not (this being the very rationale behind the strategy). A naive solution to the
problem would be to restart the expert system each time a part has been replaced and
to repeat all observations including those that have not been affected by the replace-
ment. Obviously, this solution cannot be satisfactory since there would be no way
for the system to directly compare observations from before and after the replacement
which might well be crucial for the diagnosis. One way out is to partition time into the
intervals between any two consecutive replacements and to index observations with
the corresponding interval. As we can see, the only temporal property that remains
relevant is the ordering of time whereas durations and more complex temporal rela-
tions do not play a role, This simplifies the situation up to a point where the predomi-
nant issue is the truth maintenance problem rather than the temporal representation.

Lastly, basing the diagnostic process on a deep model of the machine induces the
need for temporal inferences, In the course of the simulation or the envisioning of
the machine’s behavior we have to keep track of the state intervals for the various
machine parameters and of the temporal relations between them. This aspect has been
mentioned before in the section on model-based diagnosis, so we will skip it here.

All in all we have discussed four temporal aspects of diagnostic situations.

Aspect 1: time as a decision criterion in diagnosis planning

Aspect 2; dynamic fault situations/histories

Aspect 3! interleaving diagnosis and repair

Aspect 4; envisioning/simulating the machine’s behavior

Each of these aspects requires a specialized knowledge representation formalism and a

suitable inference mechanism. In the rest of this section we are going to take a closer
look at aspect 2,
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4.2 Dynamic Fault Situations: the Representation and Matching of Histories

In paragraph 4.1 we introduced histories as an explicit description of evolving fault
situations. If we take a look at conventional rule languages and try to accommodate
histories in the terminological framework they provide, we notice that although they
all permit complex rule conditions very few of them offer constructs to express the
kind of temporal relations between the individual conditions that are needed to re-
present histories. E.g. in the rule

IF value of parameter A > 30
AND  value of parameter B < 80
THEN component XYZ overheated

which is typical of conventional rule formalisms there is no indication whether A and
B have to be measured simultaneously or merely in the course of the same consulta-
tion with any amount of time in between. Usually the implicit assumption is made
that all observations have indeed been made simultaneously or -- somewhat weaker —
that the observation conditions have been kept sufficiently constant during the whole
consultation so that variations of the parameter values can be neglected, While this is
a useful abstraction in many cases, it definitely does not hold in the case of histories
where parameters are measured at different points of time ir order to detect changes.
The weaker form of the assumption does not hold either: frequently the observer
intentionally changes the observation conditions thereby inducing variations in the
parameter values. Consequently the expressive power of traditional rule formalisms
{more specifically: of traditional rule conditions) has to be extended,

This extension can be carried out in different ways. At the moment the choice
of an optimal representation for histories is still an open problem. At least three of
them which all have their individual merits and are currently under investigation have
to be mentioned here,

4.2.1 Time Series Analysis

If we start from the procedure that is usually employed in mechanical engineering, the
mathematical techniques of time series analysis (cf. e.g. [Anderson75]) seem to be the
natural choice, They are suited especially well to the compact description of long time
series. In the examples studied so far, however, the series are too short so that the
advantages of a compact description do not compensate the conceptual and analytical
overhead. Whether the break-even-point can be reached at all in diagnostic situations
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cannot be decided at this point of time. Furthermore it has to be investigated for
which applications the assumptions of the stochastic process models are satisfied. Al-
though we suspect that the methods of time series analysis would have to undergo
substantial changes to become useful for knowledge representation they cannot be
ruled out as a candidate for the representation of histories on the basis of present
evidence alone.

4.2.2 Temporal Logic

Another approach makes use of the varous logics that have been proposed for the
treatment of temporal information in Al Historically, these temporal logics have
many ancestors in mathematical logic. In Al they were first applied in two subfields
which are unrelated to diagnosis: planning and natural language understanding. Many
early problem solving programs ran into serious trouble when they asswmed a static
surrounding. Frequently, examples of “intelligent™ planning behavior rely on the ex-
ploitaticn of parallelism or side effects which can be formalized only poorly using
traditional situation calculi which were state of the art then. At the same time, but
independently, linguists became interested in temporal logic because a better under-
standing of discourses seemed to require the knowledge of the speaker’s intentions;
the description of these intentions which include plans and goals raised similar ques-
tions as the plans in problem solving.

Among the various proposals for time logics especially those of James Allen
[Allen83] and Drew McDermett [McDermott82] have gained wide-spread recognition.
Both provide a basic vecabulary for time references and relations between temporal
referents. In James Allen’s time logic the basic referents are time intervals which can
stand in any of the thirteen possible interval relations (before, during, overlaps etc.) to
each other. Using intervals and relations we can describe simple histories by specifying
sequences of consecutive state intervals for selected machine parameters. Consider the
following (fictitious) example:

Door closed i open
Motor off on
Temperature X <X

Fig. 3. State interval representation of a history
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In the diagram time flows horizontally from left to right, the three bars correspond
to the selected parameters and each state interval is marked off as a bar segment. The
lengths of the segments are not significant; all that matters is the relative position of
the intervals with respect 10 each other. {Allen83] discusses extensions of his basic
logic (e.g. absolute time references, reference intervals, multiple time lines) which are
needed to capture more complex diagnostic plans.

Let us suppose that the description of a history (as the one above)} forms the con-
dition part of a diagnostic rule that suggests a certain fauit. Given such a rule the rule
interpreter has to match the incoming observations against its condition. The result of
a successful match is a mapping from the observations in the observation sequence to
compatible state intervals in the history. At any time during the diagnostic process an
initial part of the observations has already been made while the results of the other
measurements are still unknown. In contrast to conventional pattern matching where
the pattern and the data are specified completely we have to deal with a complete pat-
tern (the description of the history) and incomplete data which accumulate over time.
In many cases non-monotonicity is an inescapable consequence of such a situation, In-
terestingly, though, matching histories against observations is monotonous since a
measurement that does not fit a history cannot be compensated by another observa-
tion later in the sequence (allowing for observation errors might complicate matters,
of course). To take advantage of the accumulating data as soon as possible the match-
ing operation can be carried out incrementally assigning a modaj status to each history
which is updated after each observation. This status also includes the information
about the partial mapping from observations to intervals to which the pattern matcher
has committed itself so far.

4.2.3 Discourse Representation Theory

The third approach is motivated by the knowledge engineer’s view. Histories — or
more completely, whole diagnostic plans consisting of observations and actions — have
to be extracted from the expert’s account of his knowledge. This knowledge is usually
presented in the form of a natural language discourse. All proposals that we have seen
so far have in common that the transition from the expert knowledge to the internal
representation requires an interpretative intermediate step. As an example in Allen’s
time logic the characteristic machine parameters have to be singled out before the in-
terval structure can be constructed. In general this may not be easy because the
meaning contents of a discourse is to be represented in a language which was designed
for a totally different purpose. If we accept this as the key problem the logical next
step would be to use the formalisms developed by linpuists explicitly for the represen-
tation of discourses. Even if their expressive power did not exceed that of the other
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approaches, at least the existence of algorithms for the extraction of discourse repre-
sentation structures from texts would make them highly attractive for knowledge
acquisition.

A good candidate for a representation language is Hans Kamp’s Discourse Repre-
sentation Theory (DRT) (cf. e.g. [Kamp&1], [Kolb83]) which has been used before for
knowledge representation purposes. One of the objectives of the LEX project that was
carried out jointly at the IBM research center at Heidelberg and at the University of Ti-
bingen was the representation of legal texts in an advisory expert system. Although legal
texts contain fewer temporal references than histories the LEX approach addresses a
number of key problems that occur in the treatment of histories as well. Assessing the
feasibility of an extension of Discourse Representation Theory for the representation
of more complex temporal references is one of our current research interests.

5 Conclusion

We have pointed out that a comprehensive treatment of the diagnostic procedures in
technical diagnosis has to include more than just factual knowledge in the form of
production rules. The combination of rules with a structural model of the machining
center improves the system’s performance when confronted with unforeseen faults.
Hypotheses can be verified by modifying the model in correspondence with the
suspected fault and envisioning the results. Furthermore the diagnosis can be explained
within the same conceptual framework that the expert uses. In contrast to other diag-
nostic applications which can be treated statically the temporal properties of the faults
and tests have to be taken into consideration on different levels of abstraction, After a
summary description of four important temporal aspects we have given a more de-
tailed account of dynamic fault situations, their representation in an expert system and
the pragmatics of their use in a rule-based setting. One should note that although for
didactic reasons we have referred to the rule paradigm several times throughout this
section, all of the ideas presented can be applied equally well in a model-based expert
system, The acquisition and structuring of the different kinds of knowledge needed in
our system poses a number of problems that need special attention and blend with the
simulation of the expert’s learning behavior.
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